Mathematical Systems Theory: Advanced Course
Exercise Session 2

1 Reachability subspace

Suppose that A € R"*™ and B € R™*"™ are given.

e A subspace R is a reachability subspace if there exist matrices F' and
G such that
R = (A+ BF|Im BG).

e How can we check if a given (A, B)-invariant subspace R is a reacha-
bility subspace? (See Corollary 2.6 in page 15 in the lecture note.)

Check if the following holds:
R=(A+BF|Im BNR)

where F' is an arbitrary friend of R.

e Suppose that R is a reachability subspace. How can we construct G?
(To obtain a friend F of R, see the note for Exercise Session 1.)

We find G € R™*™ that satisfies
Im BNR =1Im BG.

Suppose that Im BN'R is a subspace spanned by linearly independent

column vectors p1,---,p, (p; € R™). Then, we can obtain linearly
independent vectors uq,---,u, (u; € R™) such that
(oo ] =Bu o ow ]
Choose Uy41,- -, Um so that {u;};~, is a basis for R™. If we take
G = { uy - ur 0 - 0 } { U Uy - Uy }_1,
then
BG[ul Uy - um}:[pl e O - 0}

and hence Im BNR = Im BG holds.



Note. If Im B N'R is spanned by a subset of columns of B, then
it is VERY EASY to construct G satisfying Im B "R = Im BG.
Suppose that Im B MR becomes a span of some subset of {bj};.n:l.
If Im BNR = span {bkl, e ,bkp}, then we choose G as a diagonal
matrix with one at (kj, k;)-elements for j = 1,...,p and with zero at
other elements.

e How can we construct the maximal reachability subspace R* contained
in a given subspace Z7 (See Theorem 2.8 in page 15 in the lecture

note.)
R* = (A+ BF|Im BN S*(2)),

S*(Z) : maximal (A, B)-invariant subspace in Z,
F . a friend of S*.

Hence, to obtain R*, we need S*(Z). In the next section, we consider
Z = ker C' (which is typical in control problems in this course), and
explain the procedure to derive V* := S§*(ker C).

Problem (Reachability subspace)

Suppose that

1 0
A=11 1
01

_ o o

0
, B=10
1

S = O

Is S :=span{es} (A, B)-invariant? Is S a reachability subspace?

2 Computing V*

Given matrices A, B and C, the maximal (A, B)-invariant subspace in ker C,
denoted by V*, can be obtained by two procedures.

Method 1: V*-algorithm

Step 0: Form a matrix Vj whose columns are a basis of ker C. Set i = 0.

Step 1: Obtain a matrix Z;, with the maximal number of linearly indepen-
dent row vectors, satisfying

Zz'[Vz' B}:O



Step 2: Obtain a matrix V;;1, with the maximal number of column vectors,
satisfying

C
[ZZA‘|%+1:0

Step 3: If the two subspaces V; and V;y1, spanned by the columns V; and
Vi+1 respectively, coincide, then stop. (Note that it may happen that
Vi and V4 are different but V; = V;11) Denoting the columns by

{Uj}§=l’
V* =span{vy,---,vp}.

Otherwise, increment ¢ by one and go back to Step 1.

Note that this algorithm will converge in a finite step, due to Theorem 3.3
in page 23 in the lecture note.
Method 2: Q*-algorithm
Denote G = ImB.

Step 0: Qo = Span{C'},

Step ki Qp = Q1 + LA (Q_1 N Gl). Where L, (Qr—1 N Gl) is the
span of all row vectors wA where w € Q,_; N G*.

If there is a k* such that Qg+1q1 = Qg=, then
V= Q.

Example

For the following (A, B, ('), compute the maximal (A, B)-invariant subspace
in ker C.

1 0 1 11
A=|0 -1 -1 |,B=] 1 o0 ,02[111y
0 0 1 2 1



Method 1: V*-algorithm
Step 0: First, compute ker C.

kerC = {x e R®:Cx=0}
= {ze€R:z1+29+1235=0}

€1
= T9 :x1 €ER, 290 €R
—X1 — T2
1 0
= span 0 |, 1 =: V.
-1 -1
Therefore,
1 0
Vo = 0 1
-1 -1

Step 1: Solve Zj { Vo B } = 0 for Z.

1 0 1 1
Zol 0 1 1 0 :0:>ZOZ[111}
1 -1 -2 -1

C
Step 2: SolvelZOA]Vl—Ofoer.
1
R Vi=0 = V1= 0
1 -1 1 1

Step 3: Since V; := span{V;} is different from V), go back to Step 1.
Step 1-2: Solve Z; [ Vi B } =0 for Z;.

1 1
Zu| 0 1 |=0=Z=[111]
-1 =2
C
Step 2-2: Solve 7.4 Vo =0 for V. Then, V5, = V7.
1

4



Step 3-2: Since Vs := span {V5} equals to Vi,

1
V* =V, = span 0
-1
Method 2: (*-algorithm
1 1
G=ImB=| 1 0 :>GJ':{1 1 1}
-2 -1

Step 0: QozSpan{C}:Span{{l 1 1}},

Step 1: Q5 = Qp + L,(Q N GL).
QOQGL:[1 1 1}:10
wA:[1 1 1},:>LAm(QoﬂGl):Spcm{1 1 1}
SlezﬂoJrLAx(QomGL):Span{[1 1 1},[1 1 1}}

Step 2: O NG+ = { 111 } = w, Therefore, we have Qs = 1, so
Q=
1
Then V* is computed as V* = Q"+ = Span 0
-1
What is the maximal reachability subspace R* in this example? To compute
R*, we need a friend F' of V*. Since

1 0 1 1 1 .
Al o=l 1]=]0 |(-1)+| 1 o :
1 ~1 T e 9 1| L0
K R )
A,—/ U
1% 1% B

by solving F'V = —U, we obtain a solution

0 01
F= [ 0 0O ] '
Therefore,

R* = (A+ BF|Im BNV*)

1 0 2 1 1
= < 0O -1 0 Im 0 >:Im 0
0 1

0 -1 —



From the definition of a reachability subspace, there is a G satisfying
R* = (A+ BF|Im BG).
How can we obtain G7 We aim at choosing G with

Im BNR* =Im BG.

We achieve this relation with G = [ 8 (1) ] .

Problem (Finding V*)
For the following (A, B, ('), compute V*.

(11 0
1. A= 121,3_[11,(}_[1 1}.
[0 1 2 4 0] 01
0 0001 01
2a=loo 100l a=l1of =0 L0
01 000 0 0
000 0 1 0| 0 1
[0 1 0 0 0] 0 0
001 0O 0 0 1 0 0 -1 0
3.A=|0000O0|,B=|10|,C=|1-10 0 0
00010 0 0 0 0 1 -1
|00 0 0 0| 01

3 Relative degree and normal form

Relative degree (Square MIMO case)
Suppose that (A4, B, ') is minimal and that B and C have linearly indepen-

dent columns and rows, respectively. System

t = Ax+ Bu
C1
y = © |z, ;€ R

Cm



with m-inputs (v € R™) and m-outputs (y € R™) has relative degree
(ri,---,rm) iffori=1,...,m,

CiAjB:(]lxm, j:0717"'7r’i_2
CZ'ATi_lB 7‘é 01xm»

and the matrix

ClArl_lB
L= :
e AT 1B
is nonsingular.
Example (Relative degree)
-1 1 0 1 0 0
o 10 0 oo el J1 100
A= 1 01 1 » B= 1 0 ’C_lCQ]_[lllll'
1 1 1 -1 01
For ¢y,
aB=[0 0]
clABz[o 1}7&[0 o} — =2
For co,

CQB:[l 1}#[0 o} — =1

The matrix L becomes
I = ClAB _ 0 1 ’
CQB 11
and it is clear that L is nonsingular. Hence, the system has relative degree

(7’1,7“2) = (2, 1) .



Normal form

Once we have obtained relative degree, we can change coordinates of the
system to transform it into a normal form.

: = Nz+P¢
T

& = &
&1 = &,

&, = Riz+Si&+cA" 'Bu
vy o= & di=1,...,m.

Normal form is useful in obtaining zero dynamics and in solving several
control problems (see Chapter 5 in the lecture note).
First, choose the new states as follows.

& = ar S | [ 1 |

& = cAx & A

& = Aty i &, | i crAn—t |

& = cox [ & ] [ e ]

2 = Az 2 A

: = ¢ = 5 = : x

Z = A7y | &, ] | e AT

&' = omT & Cm

&' = cpAz & cmA

gn = cpA™mT e L& ] e AT
:ZT€

Note that € € R+ +mm)  Since x € R™, for the coordinate change, we
need to add another n — (r; + - -+ + ry,) states. We choose these states as

z:=T,x,

where T, is a matrix of size (n — (r1 +--- 4+ ry,)) X n and satisfies



o T := l T ] is nonsingular.
T

Why is such a choice of T, possible? Since the columns of B span m
dimensional subspace Im B in R", there is an (n —m) dimensional subspace

W which is orthogonal to Im B, i.e.,
R"=Im B+W, W 1 Im B.

In T¢, there are ((r1 — 1) +---+ (rm, — 1)) = (r1 + -+ - 4+ ry — m) linearly

independent row vectors in W. Therefore, we can choose another
n—m-—(ri+-+rm—m)=n—(r1+---+rnm)

linearly independent row vectors in W.
The new state vector is

z | | T .
3 Te |
~——
Therefore,
z
: = Tz
l § ]
= T(Az+ Bu)
= TAT'| © | + TBu
é‘ -
_ 1| # 0 : _
= TAT ¢ + T.B ] u (since T, B = 0),
e 3
Cm | &

Here, TAT~! and T¢ B have special structures.

Example (Normal form)

Consider the same system as before, i.e.,

-1 10 1 0 0
o 10 o0 oo el 11
A=l 1 01 1 "B 0 ’C_l@]_l11
1 11 -1 0 1



Relative degree is (2,1). So, we choose the new states as

¢l c1 1 1 00
=& | =|agd|z=]|-12 0 1|
2 Ca 1 111

By adding another state z := [ 10 00 } x,

1 -1 1 0 00
sl _ o o 1 offz],]00
El T -9 7 3 1|]|c¢ 0 1

5 3 -1 2 11
o1 o00][=
Y T 1looo1]|]el
or equivalently,
po= L+ -1 1 0]¢
N _,—/
X P
1 1
1 — 2
o _ _
52—\22—1—[7 3 1]e+][0 1]u
R —_—— ———
Sl ClAB
n o= &
2 _ _
1_\22—#[3 12}§+[1 1}u
Ry —_—— ——
So coB
y2 = &

10



