Mathematical Systems Theory: Advanced Course
Exercise Session 3

1 Transmission zero

Consider a system

r = Ax+ Bu
(E){y = Cu,

where x € R™, u € R™ and y € RP, B and C are column and row full rank
respectively, and (A, B,C) is minimal. A complex number sq is called a
transmission zero if

rank P5;(sg) < n + min(m, p), Ps(s) := l si-A4 B ] .

-C 0
How can we compute transmission zeros?
The case where p = m: Solve
det Px(s) =0

with respect to s.

The case where p < m (p > m): Solve
det Pxy(s)Pg(s)T =0 (det Px(s)T Ps(s) = 0)

with respect to s. Note that Px(s)Ps(s)? (Px(s)T Ps(s)) is a square
matrix.

Note. In MATLAB, the command tzero.m computes transmission zeros.

Examples

Square system (A,B,C)

1 0 1 00
A= -1 2|,B=|01 ’C_l(l)(l)(l)]
0 0 0 10

Compute transmission zeros.



Form a system matrix Ps:

s—1 0 —10 0
0 s+1 -2 0 1
Ps(s) :_[SI__CA ]g]_ 0 0 s 10
0 0 -100
-1 -1 0 00
s+1 -2 0 1 0 -100
det Po(s) = (s—Ddet| o ° o0 —der| ST 7200
-1 0 00 0 -100
=0
s 10 -2 0 1
= (s—=1)q(s+1)det| =1 0 0 |+det| s 1 0
0 0 0 ~1.0 0

=0
= s—1

From det Py (s) = 0, we obtain a transmission zero s = 1.

Square system (A,B,C,D)

We consider here a system of the form

= t = Ax+ Bu .
(Z){ y = Cz+Du, with

RIS A P R P

For such a system, the Rosenbrock matrix P is of the form:

—_

s+2 0 -2 0

sIl—A B 0 ] 0 2

PE(S)"[ e D]_ -1 0 1 0

0 -1 0 1
s 0 2 -2 0

det Ps(s)=(s+2)det | 0 1 0| —1-det| s 0
-1 0 1 -1 0 1

=(s+2)(s+2)—1-2(s+2)=(s+2)"s
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Taking det Py (,)—( the transmission zeros are s = 0 and s = —2. Notice
that these are also eigenvalues of the matrix A, so the transmission zeros
and the poles of the system X are equal in this example.

Non-Square system (A,B,C)

A‘[—O1 —12]’3_[(1) H’C_[l

The corresponding system matrix is

—_
[

S -1 0 0
Py (s) ::lSI__CA ?]: 1 s+2 11
-1 -1 0 0
To compute transmission zeros, we form Px(s)Pg(s)?:
s?+1 -2 —s+1
Px(s)Ps(s)T = -2 $2+4s+7 —-s-3

—s+1 —-5—3 2
The determinant of this matrix is calculated as
det Py(s)Pg(s)f = --- =2(s +1)%
Hence, by setting det Ps;(s)Ps(s)T = 0, we obtain a transmission zero as
s=—1.
Problem

Compute (both by hand and with computer) transmission zeros of the sys-
tem with the following (A, B, C).

10
A= . B=|10 ,czlioﬂ.
11

S O =
S NN
W = W

2 High gain control

Here, we will give one example of high gain control.



Example

Consider the following system:

z
3
&2
Yy

—az+ &
&2

Bz +u
&

In the system, suppose that « is a positive constant but unknown and that
[ is unknown. From the lecture note, page 38-39, the following control will
stabilize the closed-loop system for sufficiently large k:

u = —3k& — 2k%¢,.

The poles of the closed-loop system are shown in the figure below for
several k from k = 0.1 to k = 1. (o and 3 are set to one.) We can see that
large k stabilizes the closed-loop system.
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3 Noninteracting control

Given a square system

<z>{j

Ax + Bu
Cx,

where B and C have linearly independent columns rows respectively. Find
a control ©w = Fx 4+ Gv such that



1. the closed-loop system

&t = (A+ BF)x+ BGv
y = Cx

has relative degree (ry,---,7y), and

2. the i-th output y; is influenced by only the i-th input v;.

Solvability condition

The static noninteracting control problem is solvable if and only if the system
(X) has some relative degree.

How to obtain a solution u?

To obtain a solution w if the problem is solvable, we transform the system
(X) into a normal form. Then,

u=L"Y~Rz— S¢+v).

By this control, we obtain

5}1 Ry S1 cl A1l
Col= o e et : w=v,
g;” R, S em AT 1B
m —— ——
R S L

and hence &} can be controlled by v; for each i.

4 Tracking with stability

Consider the same system as above. Find a control u(t) = Fz(t) + D(t)
such that

1. the output y(t) tracks asymptotically the reference signal y4(t)
2. the state x(t) is bounded.



Solvability
The tracking problem with stability is solvable if
e the system (X) has some relative degree (r1,:--,7ry)

e the zero dynamics is asymptotically stable

e foreachi=1,...,m,

; i(1 i(ri—1
yld7yzl( )7"'7yZl(T )

are bounded.
How to obtain a solution w if the problem is solvable?
yl(rl)

d
u(t) =L | =Rz — S¢ + : +ou(t) |,

where v(t) is chosen so that the closed-loop system becomes asymptotically
stable.

Example

Consider the following system which is already in a normal form:

;= \—J\/fl/-z—k[l 113 1}5

N gl

i = jl/-z—i—[l 2 0]¢+[2 1]u
Ry SV1

& = 22+[0 1 1]e+[1 2]u
R SV2

Yy = %

yo = &

In this case,



Assume that the reference signal y, is given by

Ya(t) = l

cos wt
sinwt |’

We can check that
e The relative degree of this system is (r1,72) = (2,1).

e The zero dynamics is asymptotically stable (N=-1)

e yl = coswt, y;(rl_l) = ycll(l) = —sinwt, yz(m_l) = y2 = sinwt are
bounded
By using the control
yé(ﬁ)
u(t) =L | =Rz — S¢ + : +o(t) |,
m(rm)
Ya

We get that:
f% _ ?/Clz@) +u
3 v+ vy

Defining the tracking errors as in page 44 in the lecture notes,

= AT ey 0T =g 0T 1, =1y

we get o)
el & -y,
1| _ 1(1
| = & —yy”
“ & — 3
which implies
1(1
él oy | e
1| _ 1 12) | _
62 — 2 —_ y — Ul
é2 2 C2l(1) V9
1 1~ Y4



we obtain the closed-loop system (Yj is defined in the lecture notes page

44):
z = Nz+ Pe+ PYy
el 0 1 el 0
[é%] - [0 0] el | T 1]“1
6% = V2
Y1 = &
y2 = &

If we choose v such that the closed-loop system become asymptotically sta-

ble, for example
1
= [ ]|

— 2
'U2 — _61,

we can check that the tracking problem with stability is solved since

1. e(t) — 0 as t — oo, since the closed-loop system is asymptotically
stable

2. zis bounded since N = —1 is a stable matrix (scalar) and £ is bounded

since y}, ycll(l), yz(l) are bounded, so z(t) is bounded.



