Suggested solutions. Exam Maj 23 2013 in SF2852 Optimal Control.

1. Solution: We use PMP. The Hamiltonian is
H(z,u,\) = u? — Az + \u

Pointwise minimization gives u*(t) = —\(¢)/2. The adjoint equation
is

A=)\

and there is no boundary constrant specified on A\. This implies u*(t) =
—A(t)/2 = —e'Ag, where )\ is a free parameter that must be chosen
such that the state constraint is satisfied (this means we have chosen
A(t) = e!X(0) with A(0) = 2)g). We have
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z(1)=e! —/ e~ Detding = ¢! — ?O(e1 —eH=0
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This implies

1
A= ———F——.
07 ¢ sinh(1)
The optimal control is u*(t) = —e‘A\g and the optimal cost is

[ wopa =2
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2. Solution:

(a) The ARE becomes —2p + 1 = p?, which gives p = —1 £ +/2. The
positive definite solution p = /2—1 corresponds to the stabilizing
solution. We get

i. The optimal stabilizing feedback control u = (1 — v/2)z.
ii. The optimal cost J(x(0)) = 2(0)?p = V2 — 1.
(b) The closed loop system becomes

i=—z+(1-V2)z=—V2z

Hence, the closed loop pole is at s = —/2.



(c) HIBE gives rise to the Riccati equation
p—2p+1—p*=0

Separation of variables gives

dp B
(p+1+ﬂ)(p+1—ﬁ)_2\/§dt

pt) +1-v2Y) .
n(p(t)+1+\/§> =2V2t +
p(t)+1 — ﬂ 262\/§t+c
p(t)+1+2

The boundary condition p(T) = 0 gives ¢ = —2v/2T + In((1 —
v2)/(1+ v2)). Hence,

1— e2\/§(t7T)
UL VZ (V2 - eV T)

The optimal feedback solution is u(t) = p(t,T)x(t) and the opti-
mal cost-to-go is J(t,z) = p(t, T)z>.

p(t,T)

(d) We have
lim p(¢,T) = L _ 2-1
T—o0 1++v2
which is the same as the stabilizing solution to the ARE in prob-
lem (a).

3. Solution:

(a) Taking the logarithm of the cost we want to maximize

T-1

T-1 1
log L(x1,...,x7) = — 5 log (27) — 5 Z(ﬂct - $t+1)2a (1)
t=1

or equivalently minimizing

T-1

Z(mt - m1t+1)2-

t=1

This can be written as the dynamic programming problem

Tyl = Tt + Ut
T-1

min Z fo(t,x¢,uy) subject to
t=0

9 =0
Tt +ur € My
fort=0,1,..., 7T -1



where

The optimal cost is then obtained from (1).

Let

J(k,x) = min Z fo(t,xt,u) subject to

for xx € My and k€ 0,1,...

¢(90T)

f0(0,0,u0) =
fo(t,xp,ug) =

T-1

t=k

T,
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uj.
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xt—l—uteMtH
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Using dynamic programming, the backward recursion

J(k,x) =
J(T,z) =

gives the optimal solution. From this, we have
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The optimal path is (4 -5 — 6 — 7), and the likelihood is
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4. Solution:

The Hamiltonian is given by
H(x,u,\) = (u—2)* + Maz + u),
and pointwise minimization gives

O—a—H:ML—JL’—é
- Ou B 2

The Hamiltonian is zero, hence we get

O—H—/\((1+a)x—2>

which has the two solutions A € {0,4(1 + a)z}. In (a) the solution
A = 0 is not stabilizing, and the optimal solution is

u=r—-21+a)r = i=—(1+a)z

This gives z(t) = e~ (179 and noting that z — u = 2(1 + a)z we
have that

/ (x —u)?dt = 4(1 + a)?a? / e 24Dt gt — 9(1 4 a)al.
0 0

In (b), u = =z, which corresponds to A = 0, is stabilizing and the
optimal cost is hence 0.

In (¢), the solution u = = gives cost zero, but is not stabilizing since
then z = xg. The cost can be made arbitrary close to zero by letting
u = (1 — €)z with € > 0 tending to zero.

5. Solution:

(a) Letting y(t) = fot u(7)dr, the optimization becomes

i=—-22+u
T y=u
max/ x(t)dt subject to z(0)=0
0
y(0) =0, y(T)=K,
0<u(t) <L

The Hamiltonian corresponding to the problem is

H(x,u,\) = 2 + A~z + u) + pu



where (A, ) are the dual variables. The dynamics for the dual
equations are given by

QL P
ox
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The boundary condition of the dual system is A(T") = 0.

The optimal u is the maximizing argument the Hamiltonian,
hence

1 A4+pu>0

arg max H((z,y),u,(A\, n)) =arg max u(A+u) =<¢? A+pu=0
u€l0,1] u€(0,1]

0 A+pu<O.

The control in the second case only affect the dynamics if A\+p =
0 on an interval I. Since 1 = 0 we must have 0 = A=—1+2\z
on I, hence Ax = 1/2. For this to hold, we must have & = 0
as well, hence u = 22 on I (note that A # 0 since A =0 and
A = 0 cannot hold simultaneously). The maximizing control is
therefore

1 A4+p>0
arg max H((z,y),u, (A, p)) = arg max u(A+pu) =< 22 A+pu=0
u€l0,1] u€(0,1]
0 A+pu<O.

except possibly at isolated points.

Note first that 0 < z(t) < 1 for any control on ¢ € [0,7]. Due to
this, A < 0 for A < 1/2. Therefore A(T) = 0 implies that A(t) > 0
forall t € [0,7"). We now have p < 0 since otherwise A+ > 0 for
t € [0,7) and hence u(t) =1 for t € [0,T"), which is an infeasible
control.

In the phase plane (z, \) there are five regions of interest.

1
2
3
4
)

taA<1/2,A+pu>0  control u=1
cazA=1/2,\+pu=0  control u = z*

A< 1/2, A 4+pu <0 control u =0

cxA>1/2, A+ p >0  invariant (cannot satisfy A\(T") = 0)
cxA>1/2, A+ <0  can never be reached.

A~~~ I~ /~ —~
~— ~— ~— ~— ~—

The only regions that can be part of an optimal trajectory are
the first three listed above. At t = 0, the state is in (1), since
x(0) = 0. At time 7', the dual state is in (3) since A(T') = 0. Note



that here A < 1/2, hence A < 0. The only possible sequence of
states are hence (1) — (2) — (3) or (1) — (3). The possible
switching sequences are hence u = (1,22,0) or (1,0).

Let K =1 and T > K. First we want to bound the cost using

the control
1 t<1
u(t) = 2
(1 {0 o )

First note that fol xdt < 1 since z(t) < 1. Secondly, for ¢t > 1,
& = —z? implies that

1
o) = ———.

Integrating, we get
T
/ zdt =log((T' — 1)x(1) + 1) < log(T),
1
hence fOT xdt < 1+ log(T) using this control.
Compare this to the control v = 1/T. The ODE & = —22 + 1/T
with 2(0) = 0 has the solution

() = (1 —2 (1 + ezt/ﬁ)_1> JVT.

When ¢ > +/T it holds that
1 1
x(t)z(l— )/ﬁz

hence

T T T*\/T_
/0 xdtz/ﬁxdtz W_(\/T—l)/z.

Since log(T)/VT — 0 as T — oo, it is possible to pick T such
that (vT —1)/2 > 1 +log(T), (e.g., T = 1000). For such T, the
control (2) is not optimal, hence the optimal switching sequence
for these parameters is u = (1,22,0).



