
Examiner: Johan Karlsson, tel. 790 84 40.

Allowed books: The formula sheet and β mathematics handbook,
(or Tachenbuch Mathematischer Formeln).

Solution methods: All conclusions should be properly motivated.

Note! Your personal number must be stated on the cover sheet. Number
your pages and write your name on each sheet that you turn in!

Preliminary grades (Credit = exam credit + bonus from homeworks):
23-24 credits give grade Fx (contact examiner asap for further info), 25-27
credits give grade E, 28-32 credits give grade D, 33-38 credits give grade C,
39-44 credits give grade B, and 45 or more credits give grade A.

1. Solve the linear quadratic problem

min

∫ 1

0
(8x(t)2 + u(t)2)dt subj. to ẋ(t) = x(t) + u(t), x(0) = x0

Both the optimal feedback control and the optimal cost should be
computed.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (10p)

2. A consumer receives an amount of resources x0 to spend during N
years. During each year an amount uk is spent and the remaining
resources are adjusted according to

xk+1 = θ(xk − uk)

where θ > 0 is given (due to, e.g., interest rate, part of the resources
going bad/old, etc.). The consumer wants to maximize his utility
over N years, i.e., he wants to maximize the utility

∑N−1
k=0

√
uk. The

resulting optimization problem is

max
N−1∑
k=0

√
uk subj. to

{
xk+1 = θ(xk − uk)

0 ≤ uk ≤ xk, x0 > 0 is given

(a) Formulate the dynamic programming recursion that solves this
optimization problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2p)

(b) Show that the optimal cost to go is on the form J(k, x) = αk
√
x.

Derive a recursion for αk and derive the optimal feedback solution
in terms of αk. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (6p)

(c) Solve the problem when N = 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . (2p)
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Figure 1: Reservoir system

3. Consider the reservoir system in Figure 1. The system equations are

ẋ1(t) = −x1(t) + u(t)

ẋ2(t) = x1(t)

where 0 ≤ u ≤ 1 and the initial state is x1(0) = x2(0) = 0. Use PMP
to find the control that maximizes x2(1) subject to the constraint
x1(1) = 0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (10p)

4. Figure 2 illustrates two feedback control laws. The control is equal
to u = 1 below the switching curve and on the part of the switching
curve that is indicated by one of the arrows. Similarly, the control is
u = −1 above the switching curve and on the part that is indicated
by the other arrow. In the left hand figure, all states below the line
x2 = −x1−1 and above the line x2 = −x1+1 are uncontrollable in the
sense that no control satisfying the constraint |u| ≤ 1 can drive these
states to the origin. Which of the following optimal control problems
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Figure 2: Two feedback control laws.

corresponds to feedback control law A and feedback control law B,
respectively? One of the five optimal control problems corresponds to
A and one other corresponds to B.
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(a)

minT subject to


ẋ1 = x2, x1(0) = x10, x1(T ) = 0

ẋ2 = x1 + u, x2(0) = x20, x2(T ) = 0

|u| ≤ 1, T ≥ 0

(b)

minT subject to


ẋ1 = x1, x1(0) = x10, x1(T ) = 0

ẋ2 = x2 + u, x2(0) = x20, x2(T ) = 0

|u| ≤ 1, T ≥ 0

(c)

minT subject to


ẋ1 = x2, x1(0) = x10, x1(T ) = 0

ẋ2 = −x1 + u, x2(0) = x20, x2(T ) = 0

|u| ≤ 1, T ≥ 0

(d)

minT subject to


ẋ1 = −3x1 + 2x2 + 5u, x1(0) = x10, x1(T ) = 0

ẋ2 = 2x1 − 3x2, x2(0) = x20, x2(T ) = 0

|u| ≤ 1, T ≥ 0

(e)

min

∫ T

0
u(t)2dt subject to


ẋ1 = x2, x1(0) = x10, x1(T ) = 0

ẋ2 = x1 + u, x2(0) = x20, x2(T ) = 0

T is fixed

Hint: You don’t need to compute the switching curves. To draw the
right conclusions it is enough to determine qualitatively the feedback
laws corresponding to the various optimization problems (to do this
you can study controllablity of the system matrices, the eigenvalues of
the system matrices, etc.). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (10p)

5. Solve the following infinite horizon control problem

min

∫ ∞
0

(
6x(t)2 +

(∫ t

0
(x(s) + u(s))ds

)2

+ u(t)2

)
dt

subj. to ẋ(t) = u(t), x(0) = x0.

Give an expression for the optimal “feedback” (describe optimal u(t)
in terms of x(t), x(s), and u(s) for s < t). Discuss the stability of the
resulting controlled system (e.g., closed loop poles). . . . . . . . . . . . (10p)
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Solutions

1. The Riccati equation associated with the optimal control problem is

ṗ+ 2p+ 8− p2 = 0, p(1) = 0

By using the separation of variables method we get

dp

(p+ 2)(p− 4)
=

1

6

(
1

p− 4
− 1

p+ 2

)
dp = dt

Integration gives

ln

(
4− p
p+ 2

)
= 6(t+ c1) ⇔

4− p(t)
p(t) + 2

= c2e
6t

Using the terminal condition p(1) = 0 gives c2 = 2e−6 and

p(t) = 4
e6(1−t) − 1

2 + e6(1−t)

Hence, the optimal control is u(t) = −p(t)x(t) and the optimal cost is
J(x0) = x20p(0) = x204(e6 − 1)/(e6 + 2).

2. (a) The dynamic programming recursion is given by

J(k, x) = max
x≥u≥0

{√
u+ J(k + 1, θ(x− u))

}
, 0 ≤ k < N

J(N, x) = 0.

(b) We show this by induction. Clearly J(N, x) = 0
√
x is on the

correct form. We need to show that if J(k + 1, x) = αk+1
√
x,

then there is a real number αk such that J(k, x) = αk
√
x (also

note that the cost is nonnegative, hence αk ≥ 0). To see this,
plug the assumption into the recursion above.

J(k, x) = max
x≥u≥0

{√
u+ J(k + 1, θ(x− u))

}
= max

x≥u≥0

{√
u+ αk+1

√
θ(x− u))

}
=

√
1 + θα2

k+1

√
x,

which can be seen by analysing the maximum and noting that it is
achieved at u = x/(1+θα2

k+1) (the optimal feedback). Therefore,
J(k, x) = αk

√
x and the recursion for αk is given by

αk =
√

1 + θα2
k+1

αN = 0.
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(c) When N = 2, then α2 = 0, α1 = 1, α0 =
√

1 + θ. The feedback
is given by u0 = x0/(1 + θ), u1 = x1, and the optimal value is
J(0, x) =

√
(1 + θ)x.

3. The optimal control problem has the formulation

maxx2(1) subj. to


ẋ1(t) = −x1(t) + u(t), x1(0) = 0, x1(1) = 1/2

ẋ2(t) = x1(t), x2(0) = 0

0 ≤ u ≤ 1

The Hamiltonian becomes

H(x, u, λ) = λ1(−x1 + u) + λ2x1

From the pointwise optimization we get

u = argmax0≤u≤1H(x, u, λ) =

{
1, λ1 > 0

0, λ1 < 0

We thus expect a switching control law. The adjoint equation becomes

λ̇1 = λ1 − λ2
λ̇2 = 0

with terminal condition determined by

λ(1)−∇Φ(x(1)) ⊥ Sf

where Φ(x) = x2 and Sf = {x : x1(1) = 0.5}. Hence, we get λ1(1) =
free and λ2(1) = 1. We can now solve the adjoint system, which gives

λ1(t) = 1 + (λ1(0)− 1)et

λ2(t) = 1

There can be at most one switch in the control function since λ1(t)
is a monotonic function. From the problem it is now clear that the
control must have the form

u(t) =

{
1, 0 ≤ t < ts

0, ts < t ≤ 1

We can determine the switching time from the constraint x(1) = 0.5.
We have x1(ts) = 1− e−ts and

x(1) = e−(1−ts)(1− e−t) = 0.5

which gives ts = ln(2+e
2 ).
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4. We can immediately exclude the system (e) since the linear quadratic
control problem leads to a linear control law. Let us compute the
eigenvalues of the system matrices

(a)

[
0 1
1 0

]
eig = ±1 (b)

[
1 0
0 1

]
eig = {1, 1}

(c)

[
0 1
−1 0

]
eig = ±i (d)

[
−3 2
2 −3

]
eig = {−1,−3}

The we can exclude (c) because it has complex eigenvalues, which leads
to switching curves that allow for several switches. We can also exclude
(b) since the first state is not controllable and the second state only
can be controlled to zero inside the region −1 ≤ x2(t) ≤ 1. System
(a) corresponds to the feedback law A. It has one unstable eigenvalue,
which implies that not all states can be controled to zero. System (d)
thus corresponds to feedback law B.

5. Introduce the state y(t), which is specified by the dynamic ẏ = x+ u
and the initial value y(0) = 0. Then the optimization problem can be
written as

min

∫ ∞
0

(
6x(t)2 + y(t)2 + u(t)2

)
dt

subject to

{
ẋ = u, x(0) = x0

ẏ = x+ u, y(0) = 0.

This is an infinite horizon LQ problem with

A =

(
0 0
1 0

)
, B =

(
1
1

)
, Q =

(
6 0
0 1

)
, R = 1.

The optimal feedback is given by u = −R−1BTP [x, y]T where

P =

(
3 −1
−1 2

)
is the p.d. solution of ARE.

The closed look system is then

˙(x
y

)
= (A−BR−1BTP )

(
x
y

)
=

(
−2 −1
−1 −1

)(
x
y

)
,

which is a matrix with eigenvalues in the left half plane (λ = −3/2±√
5/2).
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