
Exam August 15, 2017 in SF2852 Optimal Control.

Examiner: Johan Karlsson, tel. 790 84 40.

Allowed books: The formula sheet and β mathematics handbook,
(or Tachenbuch Mathematischer Formeln).

Solution methods: All conclusions should be properly motivated.

Note: Your personal number must be stated on the cover sheet. Number
your pages and write your name on each sheet that you turn in!

Preliminary grades (Credit = exam credit + bonus from homeworks):
23-24 credits give grade Fx (contact examiner asap for further info), 25-27
credits give grade E, 28-32 credits give grade D, 33-38 credits give grade C,
39-44 credits give grade B, and 45 or more credits give grade A.

1. Solve the optimization problem

min (x3 − 1)2 +

2∑
k=0

u2k subj. to xk+1 = xk + uk, x0 = 0

using dynamic programming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (10p)

2. In a factory with production rate x(t) at time t it is possible to allocate
a portion u(t) of the production rate to reinvestment and 1 − u(t) to
production of a storable goods. This means that x(t) evolves according
to

ẋ(t) = 0.1u(t)x(t)

where the constant 0.1 determines how much the reinvestment in-
creases the production rate. Determine u such that the total amount
of stored goods ∫ 1

0
(1− u(t))x(t)dt

is maximized subject to 0 ≤ u(t) ≤ 1, for t ∈ [0, 1]. The initial
production rate x(0) is a known number. . . . . . . . . . . . . . . . . . . . . . .(10p)
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3. This problem consists of two questions.

(a) Determine which of the following partial differential equations
(a)− (d) corresponds to the following optimal control problem

min
u
x(1)2 s.t

{
ẋ = 2u, x(0) = x0

|u| ≤ 1

(a) −Vt = −2Vxsign(Vx), V (1, x) = x2

(b) −Vt = −2Vxsign(Vx), V (1, x) = 2x

(c) −Vt = −2Vx, V (1, x) = x2

(d) −Vt = − sin(Vx)(1 + 2Vx), V (1, x) = x2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5p)

(b) Consider the optimal control problem

J(x0) = min
u

∫ 1

0
f01(x, u)dt+

∫ 2

1
f02(x, u)dt

s.t.

{
ẋ = f1(x, u), 0 ≤ t ≤ 1, x(0) = x0

ẋ = f2(x, u), 1 ≤ t ≤ 2

Below are two attempts of solving the problem. They cannot
both be correct (and may both be wrong). Find and explain the
error(s) in the reasoning. Is any of the two attempts correct?
Attempt 1:

J∗(x0) = minu1

∫ 1
0 f01(x1, u1)dt

s.t. ẋ1 = f1(x1, u1), x1(0) = x0

+ minx1(1) minu

∫ 2
1 f02(x2, u2)dt

s.t. ẋ2 = f2(x2, u2), x2(1) = x1(1)

= min
x1(1)

J∗
1 (x0) + J∗

2 (x1(1))

Attempt 2:

J∗(x0) = minu{
∫ 1
0 f01(x, u)dt

s.t. ẋ = f1(x, u), x(0) = x0

+ minu

∫ 2
1 f02(x, u)dt

s.t. ẋ = f2(x, u),

}

= minu

{∫ 1
0 f01(x, u)dt+ J∗

2 (x(1))
}

s.t. ẋ = f1(x, u), x(0) = x0

where

J∗
k (x0) = minu

∫ k
k−1 f0k(xk, u)dt

s.t. ẋk = fk(xk, u), xk(k − 1) = x0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5p)
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Figure 1: Graph with possible routes for the robot.

4. A robot is faced with the shortest path problem of going from node
(0, 0) to node (4, 0) in the graph in Figure 1. We assume the simplest
possible dynamics, i.e., the following kinematic equations.

ẋ1 = u1,

ẋ2 = u2.

The cost of going along an arc from a node n1 = (x10, x20) to a node
n2 = (x11, x21) is

cn1,n2(r) = min
u1,u2

r

∫ 1

0
(u21 + u22)dt (1)

subj. to

{
ẋ1 = u1, x1(0) = x10, x1(1) = x11

ẋ2 = u2, x2(0) = x20, x2(1) = x21

where the constant r determines the “energy” consumption per time
unit.

(a) Use PMP to derive a formula for the optimal cost, cn1,n2(r), in (1).
Notice that the optimal control moves the robot along the straight
lines (arcs) between the nodes exactly as it is illustrated in the
figure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5p)

(b) Use (a) to compute the cost, cn1,n2(r), along each arc in the figure
(the value of r is indicated above each arc and the coordinates for
the nodes are given by the coordinate system). Then use dynamic
programming to compute the shortest (minimum cost) path from
node (0, 0) to node (4, 0). Indicate the optimal cost-to-go within
parenthesis above each node and the optimal direction with an
arrow at each node.
Remark: You don’t have to formalize the dynamic programming
calculations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5p)
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5. Consider the optimal control problem

minT


ẋ1 = 1 + u1, x1(0) = x01, x1(T ) = 0

ẋ2 = u2, x2(0) = x02, x2(T ) = 0

u1(t)
2 + u2(t)

2 = 1

We can interpret the optimal control problem as the problem of moving
a point mass from a given position in the plane to zero in minimum
time. The plane is tilted in x1 direction, which gives the speed vector
(1 + u1, u2).

(a) Which are the controllable states? . . . . . . . . . . . . . . . . . . . . . . . . (3p)

(b) Use PMP to determine the optimal solution. . . . . . . . . . . . . . . (7p)

Good luck!
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1. The dynamic programing recursion is

V (x, k + 1) = min
u

{
u2 + V (x+ u, k)

}
V (x, 3) = (x− 1)2

Simple calculations gives

u0 =
1

4
(1− x0) =

1

4
, x1 =

1

4

u1 =
1

3
(1− x1) =

1

4
, x2 =

1

2

u2 =
1

2
(1− x2) =

1

4
, x3 =

3

4

2. The Hamiltonian is given by

H(x, λ) = (1− u)x+ 0.1λux = x+ (0.1λ− 1)ux.

From the problem formulation it is clear that x(0) > 0, hence x(t) > 0
for all t ∈ [0, 1]. Therefore the control maximizing the Hamiltonian is

µ(x, λ) =


1 if λ > 10

0 if λ < 10

[0, 1] if λ = 10.

Next, the dual dynamics is given by

λ̇(t) = −∂H
∂x

= −1 + (1− 0.1λ)µ(t, x) ≥ min(−1− 0.1λ,−1),

and since there is no final constraint on x(1) and no final cost, we have
that λ(1) = 0.

Assume that λ(t) ≥ 10 for some t ∈ [0, 1], then since λ(1) = 0 there
must be a t̃ such that λ(t̃) = 10 and λ(t) < 10 for t ∈ (t̃, 1). However,
on t ∈ (t̃, 1) we then have that λ̇(t) ≥ min(−1− 0.1λ,−1) ≥ −2 which
gives a contradiction since λ decreases from the value 10 to 0 in a time
1 − t̃ ≤ 1. Therefore, λ(t) < 10 in the interval [0, 1] and the optimal
control is u∗(t) = 0 for all t ∈ [0, 1].

3. (a) We have H(x, u, λ) = 2λu. This gives µ̃(x, λ) = −sign(λ) and
thus the HJBE becomes{
−Vt = H(x, µ̃(x, Vx), Vx)

V (T, x) = φ(x)
⇔

{
−Vt = −2Vxsign(Vx)

V (1, x) = x2

Hence, alternative (a) is correct.
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(b) The second attempt is using the dynamic programming equation
correctly. In the first attempt the two time segments are treated
independently, which is a violation of the dynamic programming
equation and the principle of optimality.

4. (a) The Hamiltonian becomes H(x, u, λ) = r(u21 +u22) +λ1u1 +λ2u2.
Pointwise minimization gives

argminuH(x, u, λ) ⇒


u1 = − 1

2r
λ1

u2 = − 1

2r
λ2

The adjoint equation becomes

λ̇ = −Hx(x, u, λ) ⇒

{
λ̇1 = 0

λ̇2 = 0
⇒

{
λ1(t) = λ01 (constant)

λ2(t) = λ02 (constant)

Hence, we have a constant control{
u1(t) = u01 (constant)

u2(t) = u02 (constant)

We use the boundary conditions to determine the constants{
x11 = u01 + x10

x21 = u02 + x20
⇒

{
u01 = x11 − x10
u02 = x21 − x20

The optimal cost becomes cn1,n2(r) = r((x11−x10)2+(x21−x20)2).
(b) See Figure 2.

5. (a) The following states can be steered to zero X = {x ∈ R2 : x1 <
0} ∪ {(0, 0)}.

(b) The Hamiltonian is

H(x, u, λ) = 1 + λ1(1 + u1) + λ2u2

Pointwise minimization gives

u∗ = µ(x, λ) = −
[
λ1
λ2

]
1√

λ21 + λ22

The adjoint equation shows that (λ1, λ2) = (λ01, λ
0
2) (constant).

The state constraint gives

x1(T ) = (1− λ1√
λ21 + λ22

)T + x01 = 0 (2)

x2(T ) = − λ2√
λ21 + λ22

T + x02 = 0 (3)
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Figure 2: The cost is given above each arc. The optimal directions are given
by arrows and the optimal cost-to-go are given within parentesis above each
node.

If we square the two equations and add them together then we
get

2(1− λ1√
λ21 + λ22

)T 2 = (x01)
2 + (x02)

2

Hence, from (2) we get

T = −(x01)
2 + (x02)

2

2x01

and from (2) and (3)

u∗ = −
[
λ1
λ2

]
1√

λ21 + λ22
=

−1− x01
T

−x
0
2

T
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