
Exam October 26, 2018 in SF2852 Optimal Control.

Examiner: Johan Karlsson, tel. 790 84 40.

Allowed books: The formula sheet and β mathematics handbook.

Solution methods: All conclusions should be properly motivated.

Duration: 5 hours.

Note: Your personal number must be stated on the cover sheet. Number
your pages and write your name on each sheet that you turn in!

Preliminary grades (Credit = exam credit + bonus from homeworks):
23-24 credits give grade Fx (contact examiner asap for further info), 25-27
credits give grade E, 28-32 credits give grade D, 33-38 credits give grade C,
39-44 credits give grade B, and 45 or more credits give grade A.

1. In this problem we will determine an optimal production plan for a
chemical plant. The problem is to purify 20 tons of substance using
two available processes, A and B. The process A purifies all its input
at a cost of 4u2A, while process B purifies half of its input at the cost u2B.
The processing is done over three stages as is illustrated in Figure 1.
Here xk denotes the amount of unpurified substance at stage k and uk
is the input to process B at stage k. By our assumption on process B
we have xk+1 = 0.5uk. In order to purify all substance we can only use
process A in the last stage. The goal is to minimize the production
cost.

(a) Write down the optimal control problem. . . . . . . . . . . . . . . . . . (4p)

(b) Solve the optimal control problem using dynamic programming.
(6p)
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Figure 1: Three stage plant.
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2. Each of the following four problems require brief motivation or brief
calculations leading to the answer.

(a) What is the optimal value for

J = min tf subj. to

{
ẋ = −x+ u, x(0) = 2, x(tf ) = 0

u ∈ [−1, 1], tf ≥ 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2p)

(b) What is the optimal value for

J = min tf subj. to

{
ẋ = −x+ u, x(0) = 0, x(tf ) = 2

u ∈ [−1, 1], tf ≥ 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2p)

(c) What is the optimal value for

J = min

∫ ∞
0

(xTQx+ uTRu)dt subj. to

{
ẋ = Ax+Bu,

x(0) = 0

where Q ≥ 0 and R > 0.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2p)

(d) Consider the optimal control problem

minx1(T ) +

∫ T

0
f0(x, u)dt subject to


ẋ = f(x, u)

x(0) = x0

x1(T ) + x2(T ) = 0

x1(T )− x2(T ) = 0

The state vector has n-variables (x =
[
x1 x2 . . . xn

]T
). De-

rive the boundary condition for the adjoint variable, i.e., the con-
dition on λ(T ).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4p)
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3. Consider the linear quadratic optimal control problem

min

∫ ∞
0

(5x1(t)
2 + u(t)2)dt subject to

{
ẋ(t) = Ax(t) +Bu(t)

x(0) = x0

where x(t) = [x1(t), x2(t)]
T and

A =

(
1 1
0 1

)
, B =

(
1
1

)
, x0 =

(
1
−1

)
.

(a) Compute the optimal stabilizing feedback control and the corre-
sponding optimal cost (if you use some theorem for this, verify
that all conditions are satisfied). . . . . . . . . . . . . . . . . . . . . . . . . . . (7p)

(b) Compute the closed loop poles. . . . . . . . . . . . . . . . . . . . . . . . . . . . (3p)

4. Consider the optimal control problem

minT


ẋ1 = 1 + u1, x1(0) = x01, x1(T ) = 0

ẋ2 = u2, x2(0) = x02, x2(T ) = 0

u1(t)
2 + u2(t)

2 = 1

We can interpret the optimal control problem as the problem of moving
a point mass from a given position in the plane to zero in minimum
time. The plane is tilted in x1 direction, which gives the speed vector
(1 + u1, u2).

(a) Which are the controllable states (i.e., which are the initial states
so that there is a feasible solution)? . . . . . . . . . . . . . . . . . . . . . . . (3p)

(b) Use PMP to determine the optimal solution. . . . . . . . . . . . . . . (7p)
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5. In this problem we will see how a runner can optimize his performance.
The distance moved by the runner is determined by the equation

ṡ(t) = vmaxp(t)u(t), s(0) = 0

where u(t) ∈ [0, 1] is the effort, vmax is the maximal speed and

p(t) = 1−
∫ t

0
ke−k(t−s)u(s)ds

is the degree of fitness (k > 0 and vmax > 0 are constants). The goal
is to find an optimal function u(t) such that the distance run in T
seconds is maximized.

(a) Formulate this as an optimal control problem. Let the states be
x1(t) = s(t) and x2(t) = p(t).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3p)

(b) Show that the optimal control is of bang-bang type and derive
the switching function.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2p)

(c) Show that the runner terminates the race running, i.e. u(t) > 0
on some interval [T ∗, T ] ⊂ [0, T ].

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2p)

(d) An optimal control is called singular if the switching function is
zero on a nonzero time-interval. In this case we do not have a
pure bang-bang solution since the control may take any value
in [0, 1] during the time interval when the switching function is
zero. Show that it is possible to have a singular solution in our
problem. Based on this, what type of solution do you expect to
be optimal?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3p)

Good luck!
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Solutions

1. (a) The optimal control problem is

min 4x22 +
1∑

k=0

(4(xk − uk)2 + u2k) subj. to

{
xk+1 = 0.5uk, x0 = 20

0 ≤ uk ≤ xk

(b) The dynamic programming equation becomes

J(k, x) = min
0≤u≤x

{
4(x− u)2 + u2 + J(k + 1, 0.5u)

}
J(2, x) = 4x2

We get

J(1, x) = min
0≤u≤x

{
4(x− u)2 + u2 + 4(0.5u)2

}
=

4

3
x2 & u1 =

2

3
x1

J(0, x) = min
0≤u≤x

{
4(x− u)2 + u2 +

4

3
(0.5u)2

}
⇒ u0 =

3

4
x0

Hence we get following optimal inputs to process A and B:

stage 0 stage 1 stage 2

Process A 5 2.5 2.5
Process B 15 5 0

2. (a) The answer is t∗f = ln(3). The optimal control is clearly u = −1.

This gives x(t) = 3e−t − 1 which reaches 0 when t = ln(3).

(b) Note that for x = 1, then ẋ = −1+u ≤ 0 since u ∈ [−1, 1]. Hence
x can never cross from x < 1 to x > 1. Therefore x = 2 is not
reachable from x = 0 and the cost is infinite.

(c) One solution is x = 0, u = 0 and the corresponding cost is 0.
Since the cost f0(x, u) ≥ 0 this is the optimal solution.

(d) The boundary constraint becomes
λ1(T )− 1
λ2(T )
λ3(T )

...
λn(T )

 =


1
1
0
...
0

 ν1 +


1
−1
0
...
0

 ν2

where ν1, ν2 ∈ R. It follows that λ1(T ) and λ2(T ) are free and
the remaining adjoint variables are zero.
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3. (a) We have

A =

(
1 1
0 1

)
, B =

(
1
1

)
, Q =

(
5 0
0 0

)
, R = 1.

First note that (A,B) system is controllable since

[B,AB] =

(
1 2
1 1

)
is full rank. Secondly, note that C =

(√
5 0

)
satisfy Q = CTC

and (A,C) is observable since(
C
CA

)
=

(√
5 0√
5
√

5

)
is full rank. Thus we can use Theorem 5 in the formula sheet.
The ARE is ATP + PA+Q = PBR−1BTP and let

P =

(
p1 p2
p2 p3

)
,

which gives the system of equations

2p1 + 5 = (p1 + p2)
2, (1)

p1 + 2p2 = (p1 + p2)(p2 + p3), (2)

2p2 + 2p3 = (p2 + p3)
2. (3)

Note that (3) only has solutions p2 + p3 = 1 ± 1. Try the two
cases.

First try p2 + p3 = 2. By (2) p1 = 0 which cannot be a positive
definite solution. Therefore we know that p2 + p3 = 2.

Using (2), we get p1 = −2p2. Plugging this into (1) gives 2p1+5 =
p21/4 which has the solutions p1 = 4 ± 6. The only solution that
gives a positive definite P is p1 = 10. This gives with the positive
definite solution

P =

(
10 −5
−5 5

)
.

and the optimal control

û = −RBTPx = −
(
5 0

)
x = −5x1.

The optimal cost is J(x0) = xT0 Px0 = (1,−1)P (1,−1)T = 25.
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(b) The closed loop system is

ẋ = Ax−BR−1BTPx =

([
1 1
0 1

]
−
[
5 0
5 0

])
x

=

[
−4 1
−5 1

]
x = Âx.

The eigenvalues of Â are (−3 ±
√

5)/2 which all have negative
real parts, so the closed loop system is stable.

4. (a) The following states can be steered to zero X = {x ∈ R2 : x1 <
0} ∪ {(0, 0)}.

(b) The Hamiltonian is

H(x, u, λ) = 1 + λ1(1 + u1) + λ2u2

Pointwise minimization gives

u∗ = µ(x, λ) = −
[
λ1
λ2

]
1√

λ21 + λ22

The adjoint equation shows that (λ1, λ2) = (λ01, λ
0
2) (constant).

The state constraint gives

x1(T ) = (1− λ1√
λ21 + λ22

)T + x01 = 0 (4)

x2(T ) = − λ2√
λ21 + λ22

T + x02 = 0 (5)

If we square the two equations and add them together then we
get

2(1− λ1√
λ21 + λ22

)T 2 = (x01)
2 + (x02)

2

Hence, from (4) we get

T = −(x01)
2 + (x02)

2

2x01

and from (4) and (5)

u∗ = −
[
λ1
λ2

]
1√

λ21 + λ22
=

−1− x01
T

−x
0
2

T


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5. (a) The optimization problem is

min−x1(T ) subj. to


ẋ1(t) = vmaxx2(t)u(t), x1(0) = 0

ẋ2(t) = −kx2(t) + k(1− u(t)), x2(0) = 1

u ∈ [0, 1]

(b) The Hamiltonian is

H(x, u, λ) = λ1vmaxx2u+ λ2(−kx2 + k(1− u)).

From the pointwise minimization we get

u = argminu∈[0,1]H(x, u, λ) = argminu∈[0,1](λ1vmaxx2 − λ2k)u

=

{
0, σ < 0

1, σ > 0

where σ = λ2k − λ1vmaxx2.

(c) The adjoint equation becomes

λ̇1 = 0, λ1(T ) = −1

λ̇2 = −vmaxuλ1 + kλ2, λ2(T ) = 0

Hence λ1(t) = −1. Since λ2(T ) = 0 and x2(t) > 0 for all t > 0,
we get

σ(T ) = λ2(T )k − λ1(T )vmaxx2(T ) = vmaxx2(T ) > 0.

Hence, u(T ) = 1 and by continuity of x2(t) and λ2(t) it follows
that there exists an interval [T ∗, T ] ⊂ [0, T ] on which u(t) = 1.

(b) We have

σ̇(t) = −vmaxx2 + k2λ2 + vmaxk = kσ − 2kvmaxx2 + vmaxk

Hence
σ̇(t)|σ(t)=0 = 0

corresponds to x2(t) = 0.5. This value of x2 is an equilibrium
point (i.e., ẋ2(t) = 0) if u = 0.5.We have thus shown that there
exists a singular solution corresponding to u = 0.5. One would
expect that if the time interval is very long enough (T is large)
then the optimal solution is on the form:

(a) first u = 1 until x2(t) = 0.5

(b) then u = 0.5 until some point near the end

(c) then we let u = 1 again.

It is possible to prove that at most one switch could happen,
which proves that the optimal solution must be of the form stated
for large T .
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