Exam October 25, 2019 in SF2852 Optimal Control.

Examiner: Johan Karlsson, tel. 790 84 40.
Allowed books: The formula sheet and § mathematics handbook.
Solution methods: All conclusions should be properly motivated.

Note: Your personal number must be stated on the cover sheet. Number
your pages and write your name on each sheet that you turn in!

Preliminary grades (Credit = exam credit + bonus from homeworks):
23-24 credits give grade Fx (contact examiner asap for further info), 25-27
credits give grade E, 28-32 credits give grade D, 33-38 credits give grade C,
39-44 credits give grade B, and 45 or more credits give grade A.

1. Consider the optimal control problem

o0
min Z(mi +4u3) subjto py1 = 2(xp +ug), To = given
k=0

(a) Use the Bellman equation
V(x) = min {fo(z,u) + V(f(z,u))}

to compute the optimal control and the optimal cost. ..... (8p)

(b) Compute the eigenvalue of the closed loop system. ........ (2p)

2. In this problem you will solve the following optimal control problem

. 2 2 :
min Tn+u subj. to
Z( k k) J ug € Uk(ag) ={u:0 < xp +u < 2;uis an integer}

2
{l‘kzﬂ =xp+uk, x0=0; x3=2
k=0

(a) Formulate the dynamic programming algorithm for this problem.

........................................................... (2p)
(b) Use the dynamic programming recursion to find the optimal so-

lution.

........................................................... (8p)



3. Consider the optimal control problem

mm/wmmust B(t) = —a(t) + u(t), (0)=z0 x(t;)=0
0 - u € [0, m]
(1)

(a) Suppose tf is fixed. For what values of g is it possible to find a
solution to the above problem, i.e. for what values of g can the
constraints be satisfied?

(b) Find the optimal control to (1) (for those zy you found in (a)).
(5p)

(c) Let ty be free, i.e. consider the optimal control problem
ty (1) — —a(t ; 0) — ) — 0
min/ u(t)dt s.t. #(?) z(t) +u(t), z(0) =m0 xz(ty)
0 we[0,m]; ty >0

Solve this optimal control problem for the case when xy < 0.

4. Consider the following value function (cost-to-go function)

T
V(to,z0) = max / Vou(t)dt

u(t)>0,t€[to,T] J ¢,
i(t) = Pa(t) — u(t)
s.t. ¢ (t) > 0, € [to, T

x(ty) = xo

where 8 > 0. Verify that V(t,x) = f(t)\/x, where

eBT—t) _q
=\ —F—

Comment: Note that the value function is only defined on [0,T] x R4,
where Ry = (0,00) (i.e. V :[0,T] x Ry — Ry). The theorems
presented in the course are also valid when the domain is restricted to
such a set.



5. Consider the following optimization problem

1
inf / t)2dt 2
0ultien ] Jo 2 @

(t) = u(t)
(0) =0,2(1) =1

~
£

subject to &

8

where inf(S) denotes the infimum of S C R, i.e., the greatest lower
bound on the numbers in S.

(a) Find the infimum in (2). ... (3p)

(b) Find a sequence of feasible control functions uy(t) such that the
corresponding objective function in (2) converges to the infimum
AS K = 00, oo (7p)

Hint: Consider restricting the problem to a set of controllers that
are zero in an interval in the beginning.

Good luck!



Solutions

1. (a)

The Bellman equation becomes
V(z) = min{z? + 4u® + V(22 + 2u)}
u
Let us try V(z) = pz?. We get

pr? = min{z? + 4u® + p(2x + 2u)?}
u
2

D 2 4p

2 2
+ x)° — z°+ (1 +4p)x
14+0p 14+0p ( p) }

= muin{4(1 +p)(u

This gives the optimal control
p

=——2x
1+p

where p is the positive definite solution to the Riccati equation

4p?

_1+p
& pPP—4p—-1=0

& p=2++5

p= + (1 +4p)

Hence, p = 2+ /5 and

*__2+1¢5
345
V(xo) = (24 V5)x?

The closed loop system is

) 4425 2
T = - |z = ———=y,
hrd 3+5 3+v5 "

2
3+V5"

The dynamic programming recursion can be stated

and hence the eigenvalue is

Jr(zr) = min {xi—ku%—i—JHl(xk—kuk)}, k=0,1,2
up €U (21)

0, ax3=2
J3(w3) = { ’

o0, otherwise

For the second stage we have the following solution

Ja(z2) = min {x% + u%} =212 —dxy + 4

Us=2—1x9

Hence, the solution is given according to the following table



o [ o) [ )|
0 4 2
1 2 1
2 4 0

In the first stage we get

Ji(z1) = min {x% + u% + Ja(z1 + ul)}
1

—r1<u1<2—x

J1(z1,u1)

The cost Ji(x1,u;) for all feasible pairs (uj,x1) are given in the
following table.

(mfm="2]-1]0[1]2]
0 41378
1 6 |36
2 12 718

which implies the follow optimal solution

[z1 [ Ny [ pQ ) |

0 3 1
1 3 0
2 7 -1

In the initial stage we have the Bellman recursion

Jo(zo) = min {3 +ud + Ji(zo +uo) }

—zo<up<2—xo

~~

Jo(zo,u0)

The cost Jy(xzg) for all feasible pairs (xg,up) are given in the
following table

(2o fJuo=-2] 1[0 1]2]

0 3 1411
1 5 419
2 11 8 11
and thus
| 2o || Jo(wo) | p(0,20) |
0 3 0
1 4 0
2 8 -1

The optimal control is thus



and the corresponding optimal state trajectory is

zg=0, 21 =0, 25 =1, 23 =2
The solution to the differential equation is
t
z(t) = etz +/ e Su(s)ds
0

Since u(t) > 0 it follows that z(t) > e ‘x, which never can
become zero in finite time unless o < 0. Suppose zg < 0. It is
possible to bring the state back to zero in time ¢ if

e Mrg+(1—e)m>0

ie., if zg > — (el — 1)m.
Hence, the constraint can be satisfied if zg € [—(e'/ — 1)m, 0].
The Hamiltonian function is H(x,u, \) = u + A(—x + u). Point-

wise minization gives
u* = fi(z, \) = argmin, o ) H (2, u, A) = argmin, ¢ ) (1 + A)u
0, A>-1
m, A<-—1
The adjoint differential equation is
OH
oxr

which has the solution A(t) = ef)g, for some \g € R. Hence, the
optimal control is

A\ = A

*(t) 0, 6t>\0 > —1
U =
m, efdg < —1

Hence, there are three cases

(a) A > 0= u*(t) =0,te€ [O,tf]

(b) Ao € (—1,0) = w*(¢) will switch from u*(t) = 0 to u*(t) =m
at t = —1In(|\o])

(€) Ao < —1=u*(t)=m,te[0,ty]

Hence, the possible control sequences are {0}, {0,1}, and {1},

i.e. the optimal control is



where t* € [0,7] must be determined. One way to determine t*
is to consider the closed form solution

ty .
l’*(tf) — eftf‘rro +/ ef(tffs)u*(s)ds — eitf$0 + (1 . ef(tfft ))m _

$*

Hence, we get
1 +In (m+€fﬂo)
m

which is between [0, ¢¢] when z¢ € [—(e'f — 1)m, 0].

Let us investigate the condition
H(a* (1), u* (1), 1) = 0, ¢ € [0,£5)

We already now from above that the optimal control is of bang-
bang type and there is at most one switch from u*(t) = 0 to
u*(t) = m. Suppose u*(t) =0 on t € [0,t*]. Then

H(z* (1), 0 (£), A1) = M) (t) = et hoetzo = Aoao = 0, t € [0, "]

However, we know from above that A\g < 0 if there is a switch
and zg < 0 by assumption. This contradicts the assumption
that there is a switch and it follows that the optimal control is
u*(t) = 0, for all ¢ > 0. Note that this implies th = oo, ie. it
takes infinitely long time to do the transfer but the cost is zero.

. We use the verification theorem, i.e., we need to verify that

~rt) =mox{ v+ S o) (o - w0}

for some V : [0,7] x (0,00) — R With V(t,2) = f(t)v/z, we get

—f(t)y/x = max {\/ﬂ—i— g\(}j%(ﬁa: - u)}
VAR QNP
BRI AN GE
where we used that v = y/z/f(t) is the maximizing control. This
equation is satisfied if

~F(070) = 50+ B 0?)

which implies

eIB(Tft) — 1

—5

Finally notice that V(T,z) = f(T)y/x = 0, since f(T) = 0.

f)? =

0



5. For a given 0 < ¢ < 1, consider the optimal controller u. given the
additional constraint that it must be zero in the interval [0,¢]. The
corresponding restricted optimization problem is

1
inf ] / tu(t)?dt

z(t),u(t),tee,1
subject to @(t) = u(t)
z(e) =0, =z(1)=1.

The Hamiltonian is given by H(t,z,u,\) = tu? + \u, and the mini-
mizing u is given by

A
t Sh—_
plt e, A) = —o
The adjoint dynamics are
: OH
)\ = - =
Ox 0

hence A is constant. The optimal control for the restricted problem is
thus ue(t) = —2% where ) is selected so that (1) = 1 is satisfied. This
can be determined by

1 1
1:;5(1):/ u(t)dt:/ —%dtz%log(e),

—72510;(6) t € [e 1]

{0 telo0,e)

is the optimal controller subject to the restricted that it is zero on
[0, €]. The cost corresponding to this controller is

1 142 2
A A 1
2
= —_2 - _ )
/6 tu(t)“dt /6 1 dt 1 og(€) og(©)

Note that —@ — 0 as ¢ — 0, hence by selecting a sequence of
controllers as u. and letting ¢ — 0 we see that the infimum is less or
equal to 0. Further, note that the cost is always non-negative, hence
0 is the greatest lower bound to the cost.




