
Solutions to the exam in SF2862, June 2009

Exercise 1.
This is a deterministic periodic-review inventory model. Let
n = the number of considered weeks, i.e. n = 4 in this exercise, and
ri = the demand at week i, i.e. r1 = r2 = r3 = r4 = 100 in this exercise.

The total cost consists of three parts: The ordering costs for orders, the holding costs, and
the metal cost. But the latter is 1000× (r1 + r2 + r3 + r4) for all feasible order plans, so this
unavoidable metal cost may simply be ignored when searching for an optimal order plan.

Let C(j)
i = the minimal remaining (ordering+holding) costs from week i, given that the

inventory is empty at the end of week i−1 and then filled in such a way that the next time it
will be empty is by the end of week j. Then C(j)

i = K+h·(ri+1 +2ri+2 + · · ·+(j−i)rj)+Cj+1.

Further, let Ci = the minimal remaining (ordering+holding) costs from week i, given that
the inventory is empty at the end of week i−1. Then Ci = min{C(i)

i , C
(i+1)
i , . . . , C

(n)
i }.

(a). Here, K = 700 and h = 2. We then get that

C4 = C
(4)
4 = 700.

C
(4)
3 = 700 + 200 = 900.

C
(3)
3 = 700 + C4 = 1400.

C3 = min{C(3)
3 , C

(4)
3 } = 900.

C
(4)
2 = 700 + 200 + 400 = 1300.

C
(3)
2 = 700 + 200 + C4 = 1600.

C
(2)
2 = 700 + C3 = 1600.

C2 = min{C(2)
2 , C

(3)
2 , C

(4)
2 } = 1300. C(4)

1 = 700 + 200 + 400 + 600 = 1900.
C

(3)
1 = 700 + 200 + 400 + C4 = 2000.

C
(2)
1 = 700 + 200 + C3 = 1800.

C
(1)
1 = 700 + C2 = 2000.

C1 = min{C(1)
1 , C

(2)
1 , C

(3)
1 , C

(4)
1 } = 1800.

The optimal plan is to order 200 kg before the first week and 200 kg before the third week.

(b). Here, K = 700 + c > 700 and h = 2. We then get that

C4 = C
(4)
4 = 700 + c.

C
(4)
3 = 700 + c+ 200 = 900 + c.

C
(3)
3 = 700 + c+ C4 = 1400 + 2c.

C3 = min{C(3)
3 , C

(4)
3 } = 900 + c.

C
(4)
2 = 700 + c+ 200 + 400 = 1300 + c.

C
(3)
2 = 700 + c+ 200 + C4 = 1600 + 2c.

C
(2)
2 = 700 + c+ C3 = 1600 + 2c.

C2 = min{C(2)
2 , C

(3)
2 , C

(4)
2 } = 1300 + c.
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C
(4)
1 = 700 + c+ 200 + 400 + 600 = 1900 + c.

C
(3)
1 = 700 + c+ 200 + 400 + C4 = 2000 + 2c.

C
(2)
1 = 700 + c+ 200 + C3 = 1800 + 2c.

C
(1)
1 = 700 + c+ C2 = 2000 + 2c.

C1 = min{C(1)
1 , C

(2)
1 , C

(3)
1 , C

(4)
1 }.

If 0 < c < 100 then C1 = C
(2)
1 = 1800 + 2c, and then the optimal plan is

to order 200 kg before the first week and 200 kg before the third week.
If c > 100 then C1 = C

(4)
1 = 1900 + c, and then the optimal plan is

to order 400 kg before the first week.

Exercise 3.
The solution of this exercise is best illustrated by drawing a decision tree, but since we are
reluctant to do this in latex, we present the solution in a much more boring way.

Let H1 be the decision of making a hard first serve.
Let L1 be the decision of making a lob first serve.
Let H2 be the decision of making a hard second serve.
Let L2 be the decision of making a lob second serve.
Let IN be the event that the serve is in bounds.
Let OUT be the event that the serve is not in bounds.

H1
A hard first serve is in bounds with prob p, and out of bounds with prob 1−p.

H1 - IN
Here, MM wins the point with prob 3/4 and loses the point with prob 1/4.
The expected cost at this node is thus (3/4) · (−1) + (1/4) · (+1) = −1/2.

H1 - OUT
There are two alternatives for the second serve: hard or lob.

H1 - OUT - H2
A hard second serve is in bounds with prob p, and out of bounds with prob 1−p.

H1 - OUT - H2 - IN
Here, MM wins the point with prob 3/4 and loses the point with prob 1/4.
The expected cost at this node is thus (3/4) · (−1) + (1/4) · (+1) = −1/2.

H1 - OUT - H2 - OUT
Here, MM loses the point. The expected cost at this node is thus +1.

H1 - OUT - H2
The expected cost at this node is thus p · (−1/2) + (1−p) · (+1) = 1−3p/2.

H1 - OUT - L2
A lob second serve is in bounds with prob q, and out of bounds with prob 1− q.

H1 - OUT - L2 - IN
Here, MM wins the point with prob 1/2 and loses the point with prob 1/2.
The expected cost at this node is thus (1/2) · (−1) + (1/2) · (+1) = 0.
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H1 - OUT - L2 - OUT
Here, MM loses the point. The expected cost at this node is thus +1.

H1 - OUT - L2
The expected cost at this node is thus q · 0 + (1−q) · (+1) = 1−q.

H1 - OUT
The minimal expected cost at this node is thus min{ 1−3p/2, 1−q }.

H1
The minimal expected cost at this node is thus p · (−1/2) + (1−p) ·min{ 1−3p/2, 1−q }.

L1
A lob first serve is in bounds with prob q, and out of bounds with prob 1−q.

L1 - IN
Here, MM wins the point with prob 1/2 and loses the point with prob 1/2.
The expected cost at this node is thus (1/2) · (−1) + (1/2) · (+1) = 0.

L1 - OUT
There are two alternatives for the second serve: hard or lob.

L1 - OUT - H2
A hard second serve is in bounds with prob p, and out of bounds with prob 1−p.

L1 - OUT - H2 - IN
Here, MM wins the point with prob 3/4 and loses the point with prob 1/4.
The expected cost at this node is thus (3/4) · (−1) + (1/4) · (+1) = −1/2.

L1 - OUT - H2 - OUT
Here, MM loses the point. The expected cost at this node is thus +1.

L1 - OUT - H2
The expected cost at this node is thus p · (−1/2) + (1−p) · (+1) = 1−3p/2.

L1 - OUT - L2
A lob second serve is in bounds with prob q, and out of bounds with prob 1− q.

L1 - OUT - L2 - IN
Here, MM wins the point with prob 1/2 and loses the point with prob 1/2.
The expected cost at this node is thus (1/2) · (−1) + (1/2) · (+1) = 0.

L1 - OUT - L2 - OUT
Here, MM loses the point. The expected cost at this node is thus +1.

L1 - OUT - L2
The expected cost at this node is thus q · 0 + (1−q) · (+1) = 1−q.

L1 - OUT
The minimal expected cost at this node is thus min{ 1−3p/2, 1−q }.

L1
The minimal expected cost at this node is thus q · 0 + (1−q) ·min{ 1−3p/2, 1−q }.
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From these calculations, we get that the minimal expected cost before making the
first serve is given by

min{ −p/2 + (1−p) ·min{ 1−3p/2, 1−q }, (1−q) ·min{ 1−3p/2, 1−q } }.

Alternatively, this minimal expected cost can be written

min{ FHH(p, q), FHL(p, q), FLH(p, q), FLL(p, q) }, where

FHH(p, q) = −p/2 + (1−p)(1−3p/2),
FHL(p, q) = −p/2 + (1−p)(1−q),
FLH(p, q) = (1−q)(1−3p/2),
FLL(p, q) = (1−q)2.

(a). If p = 1/2 and q = 7/8 then

FHH(p, q) = −1/8,
FHL(p, q) = −3/16,
FLH(p, q) = 1/32,
FLL(p, q) = 1/64,

which shows that the optimal strategy is a hard first serve and a lob second serve.

(b). We have that

FLH(p, q)− FHL(p, q) = (1−q)(1−3p/2) + p/2− (1−p)(1−q) = pq/2 > 0,

which shows that the strategy “L1–H2” is always inferior to the strategy “H1–L2”.
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Exercise 4.

The arrival rates to the two facilities are obtained from the system

λ1 = 9 p+ 0.2λ2 and λ2 = 9 (1−p) + 0.5λ1,

which gives that λ1 = 2 + 8p and λ2 = 10− 5p.

We know that both F1 and F2 are M/M/1 with µ1 = µ2 = 10,
so that ρ1 = λ1/µ1 = 0.2 + 0.8p and ρ2 = λ2/µ2 = 1− 0.5p.

(a) The system can be in steady state if and only if both ρ1 < 1 and ρ2 < 1 (with strict
inequalities), which is equivalent to that 0 < p < 1 (with strict inequalities).
In particular, the system can not be in steady state if p = 0 or p = 1.

(b) Assume that 0 < p < 1. Then

L1 =
λ1

µ1 − λ1
=

2 + 8p
8− 8p

= −1 +
10

8− 8p
and L2 =

λ2

µ2 − λ2
=

10− 5p
5p

= −1 +
10
5p

,

so that the average number of customers in the system is

L1 + L2 = −2 +
10

8− 8p
+

10
5p

= −2 +
1.25
1−p

+
2
p

.

This number should be minimized with respect to p ∈ (0, 1).

Let f(p) = −2 +
1.25
1−p

+
2
p

. Then f ′(p) =
1.25

(1−p)2
− 2
p2

and f ′′(p) =
2.5

(1−p)3
+

4
p3

.

Since f ′′(p) > 0 for all p ∈ (0, 1), f is strictly convex on this interval, so we search for a
solution to f ′(p) = 0, which after some simple calculations gives that the unique optimal p is

p =
√

2√
2 +
√

1.25
=

2
2 +
√

2.5
≈ 2

2 + 1.6
=

5
9

.

(c) Assume again that 0 < p < 1. Then the steady state probability that facilty F1 is empty
is 1 − ρ1 = 0.8(1−p) and the corresponding probability for F2 is 1 − ρ2 = 0.5p. The steady
state probability that the whole system is empty is then given by (1−ρ1)(1−ρ2) = 0.4p(1−p),
which should be maximized. Simple calculations shows that the unique optimal p is p = 0.5,
in which case the steady state probability for an empty system is 0.1.

(d) Let Vj be the expected time for a customer who arrives to facility Fj to go through

that facility once. Then Vj =
1

µj − λj
, so that V1 =

1
8− 8p

and V2 =
1
5p

.

Let Wj be the expected remaining time in the system for a customer who arrives
to facility Fj . Then W1 = V1 + 0.5W2 and W2 = V2 + 0.2W1, which gives that

W1 =
10/9

8− 8p
+

5/9
5p

and W2 =
2/9

8− 8p
+

10/9
5p

.

A randomly chosen new customer will with probablity p first go to F1, and with probablity
1−p first go to F2. Therefore, the expected total time in the system for a new customer is

pW1 + (1−p)W2 =
1
9

(
2 + 8p
8− 8p

+
10− 5p

5p

)
=
L1 + L2

9
.

The optimal p is thus the same as in (b) above.
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Exercise 5.

Assume that the false coin is known to be among n specific coins.
If Hook puts k coins in each bowl, where k ≥ 1 and 2k ≤ n, then one of the
following two things will happen.

The two bowls contain equal weights, in which case the false coin is among the left out n−2k
coins. After this, the minimal numbers of additional trials (in worst case) is V (n−2k).

The bowls contain different weights, in which case the false coin is among the k coins in the
lightest bowl. After this, the minimal numbers of additional trials (in worst case) is V (k).

So after the trial with k coins in each bowl, the minimal numbers of additional trials will (in
worst case) be the largest of the two numbers V (n−2k) and V (k), i.e. max{V (n−2k), V (k)}.

Note that if n is even and k = n/2, then the bowls cannot contain equal weights, so then
max{V (n−2k), V (k)} ought to be replaced simply by V (k). But this replacement is not
needed if we define V (0) = 0.

The above discussion leads to the recursive equation:
V (n) = 1 + min

k
{max{V (n−2k), V (k)} } ,

where k must satisfy 1 ≤ k ≤ n

2
, and where V (0) = V (1) = 0.

V (2) = 1 + min
k
{max{V (2−2k), V (k)} } = 1 + {max{V (0), V (1)} } = 1. Optimal k = 1.

V (3) = 1 + min
k
{max{V (3−2k), V (k)} } = 1 + {max{V (1), V (1)} } = 1. Optimal k = 1.

V (4) = 1+min
k
{max{V (4−2k), V (k)} } = 1+min {max{V (2), V (1)}, max{V (0), V (2)} } =

= 1 + min {max{1, 0}, max{0, 1} } = 1 + 1 = 2. Optimal k = 1 or 2.

V (5) = 1+min
k
{max{V (5−2k), V (k)} } = 1+min {max{V (3), V (1)}, max{V (1), V (2)} } =

= 1 + min {max{1, 0}, max{0, 1} } = 1 + 1 = 2. Optimal k = 1 or 2.

V (6) = 1 + min
k
{max{V (6−2k), V (k)} } =

1 + min {max{V (4), V (1)}, max{V (2), V (2)}, max{V (0), V (3)} } =
1 + min {max{2, 0}, max{1, 1}, max{0, 1} } = 1 + 1 = 2. Optimal k = 2 or 3.

V (7) = 1 + min
k
{max{V (7−2k), V (k)} } =

1 + min {max{V (5), V (1)}, max{V (3), V (2)}, max{V (1), V (3)} } =
1 + min {max{2, 0}, max{1, 1}, max{0, 1} } = 1 + 1 = 2. Optimal k = 2 or 3.

V (8) = 1 + min
k
{max{V (8−2k), V (k)} } =

1 + min {max{V (6), V (1)}, max{V (4), V (2)}, max{V (2), V (3)} max{V (0), V (4)} } =
1 + min {max{2, 0}, max{2, 1}, max{1, 1}, max{0, 2} } = 1 + 1 = 2. Optimal k = 3.

V (9) = 1 + min
k
{max{V (9−2k), V (k)} } =

1 + min {max{V (7), V (1)}, max{V (5), V (2)}, max{V (3), V (3)} max{V (1), V (4)} } =
1 + min {max{2, 0}, max{2, 1}, max{1, 1}, max{0, 2} } = 1 + 1 = 2. Optimal k = 3.

So the optimal strategy for Captain Hook is to first put 3 coins in each bowl and let 3 coins
be left out. After the first balancing, there will be just 3 coins to choose between. Then one
more balancing is needed, with one coin in each bowl and one left out.
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