Solutions to the exam in SF2862, June 2009

Exercise 1.

This is a deterministic periodic-review inventory model. Let

n = the number of considered weeks, i.e. n =4 in this exercise, and

r; = the demand at week i, i.e. 7y = ro = r3 = r4 = 100 in this exercise.

The total cost consists of three parts: The ordering costs for orders, the holding costs, and
the metal cost. But the latter is 1000 X (r; + 72 + r3 + r4) for all feasible order plans, so this
unavoidable metal cost may simply be ignored when searching for an optimal order plan.

Let Cl.(j ) = the minimal remaining (ordering+holding) costs from week i, given that the
inventory is empty at the end of week i—1 and then filled in such a way that the next time it
will be empty is by the end of week j. Then C’i(j) = K+h(rig1+2ri2+- -+ (j—i)r;) + Cjq1.
Further, let C; = the minimal remaining (ordering+holding) costs from week i, given that
the inventory is empty at the end of week i—1. Then C; = min{ C'Z-(z), CZ-(HU, ce c™ }.

(a). Here, K =700 and h = 2. We then get that
cy = Y = 700.

C$Y = 700 + 200 = 900.
C$Y =700 4 C4 = 1400.
Cs =min{ ¥, c{¥ } = 900.

(¥ = 700 + 200 + 400 = 1300.

(¥ =700 + 200 + Cy = 1600.

C? =700 4 C3 = 1600.

Cy = min{ C?, ¥, c$Y } = 1300. ¢ = 700 + 200 4 400 + 600 = 1900.

C® = 700 + 200 + 400 + C; = 2000.

) =700 + 200 + C5 = 1800.

M =700 4 Cy = 2000.

¢y =min{ Y, ¢, c® ¢} = 1800.

The optimal plan is to order 200 kg before the first week and 200 kg before the third week.
(b). Here, K =700 4 ¢ > 700 and h = 2. We then get that

Cy=CY =700+ c.

C{Y =700 + ¢ 4 200 = 900 + c.
CY =700 4 ¢ + C4 = 1400 + 2c.
C3 = min{ C§3), 03(,4) } =900+ c.

M =700 + ¢ + 200 + 400 = 1300 + c.
C{¥ =700 + ¢ + 200 + Cy = 1600 + 2c.
C? =700+ ¢ + C5 = 1600 + 2.

Cy =min{ C?, ¥, Y } = 1300 + c.



C® =700 + ¢ 4 200 + 400 + 600 = 1900 + c.
C® =700 4 ¢ + 200 + 400 + C; = 2000 + 2c.
P =700 + ¢+ 200 + C5 = 1800 + 2c.

Y =700 4 ¢ + Cy = 2000 + 2c.

¢y =min{ M, ¢ c® cWy.

If 0 < ¢ < 100 then C; = C\® = 1800 + 2¢, and then the optimal plan is
to order 200 kg before the first week and 200 kg before the third week.
If ¢ > 100 then Cy = C1(4) = 1900 + ¢, and then the optimal plan is

to order 400 kg before the first week.

Exercise 3.
The solution of this exercise is best illustrated by drawing a decision tree, but since we are
reluctant to do this in latex, we present the solution in a much more boring way.

Let H1 be the decision of making a hard first serve.
Let L1 be the decision of making a lob first serve.

Let H2 be the decision of making a hard second serve.
Let L2 be the decision of making a lob second serve.
Let IN be the event that the serve is in bounds.

Let OUT be the event that the serve is not in bounds.

H1
A hard first serve is in bounds with prob p, and out of bounds with prob 1—p.
H1 - IN

Here, MM wins the point with prob 3/4 and loses the point with prob 1/4.
The expected cost at this node is thus (3/4) - (=1) + (1/4) - (+1) = —1/2.

H1l - OUT
There are two alternatives for the second serve: hard or lob.

H1 - OUT - H2

A hard second serve is in bounds with prob p, and out of bounds with prob 1—p.
H1 - OUT - H2 - IN

Here, MM wins the point with prob 3/4 and loses the point with prob 1/4.

The expected cost at this node is thus (3/4) - (—1) + (1/4) - (+1) = —1/2.

H1 - OUT - H2 - OUT

Here, MM loses the point. The expected cost at this node is thus +1.

H1 - OUT - H2

The expected cost at this node is thus p- (=1/2) + (1-p) - (+1) = 1—3p/2.

H1 - OUT - L2

A lob second serve is in bounds with prob ¢, and out of bounds with prob 1 — gq.
H1 - OUT - L2 - IN

Here, MM wins the point with prob 1/2 and loses the point with prob 1/2.

The expected cost at this node is thus (1/2) - (=1) + (1/2) - (+1) = 0.



H1 - OUT - L2 - OUT
Here, MM loses the point. The expected cost at this node is thus +1.

H1 - OUT - L2
The expected cost at this node is thus ¢- 0+ (1—¢q) - (+1) = 1—gq.

H1l - OUT

The minimal expected cost at this node is thus min{ 1-3p/2, 1—¢q }.

H1

The minimal expected cost at this node is thus p - (—=1/2) + (1—p) - min{ 1-3p/2, 1—q }.
L1

A lob first serve is in bounds with prob ¢, and out of bounds with prob 1—gq.

L1 - 1IN

Here, MM wins the point with prob 1/2 and loses the point with prob 1/2.
The expected cost at this node is thus (1/2) - (—=1) + (1/2) - (+1) = 0.
L1 - OUT

There are two alternatives for the second serve: hard or lob.

L1 - OUT - H2

A hard second serve is in bounds with prob p, and out of bounds with prob 1—p.
L1-OUT-H2-1IN

Here, MM wins the point with prob 3/4 and loses the point with prob 1/4.

The expected cost at this node is thus (3/4) - (—1) + (1/4) - (+1) = —1/2.
L1-O0OUT-H2-0UT

Here, MM loses the point. The expected cost at this node is thus +1.

L1 - OUT - H2

The expected cost at this node is thus p- (=1/2) + (1—p) - (+1) = 1-3p/2.
L1-O0OUT - L2

A lob second serve is in bounds with prob ¢, and out of bounds with prob 1 — q.
L1-0UT-L2-1IN

Here, MM wins the point with prob 1/2 and loses the point with prob 1/2.

The expected cost at this node is thus (1/2) - (=1) +(1/2) - (+1) = 0.
L1-0OUT-L2-0UT

Here, MM loses the point. The expected cost at this node is thus +1.

L1-OUT - L2
The expected cost at this node is thus ¢- 0+ (1—¢q) - (+1) = 1—gq.

L1 - OUT
The minimal expected cost at this node is thus min{ 1-3p/2, 1—¢q }.
L1

The minimal expected cost at this node is thus ¢ -0+ (1—¢) - min{ 1-3p/2, 1—q }.



From these calculations, we get that the minimal expected cost before making the
first serve is given by

min{ —p/2 + (1—p) - min{ 1-3p/2, 1—¢q }, (1—¢) - min{ 1-3p/2, 1—q } }.

Alternatively, this minimal expected cost can be written

min{ Fgg(p, ¢), Fyr,(p, @), FLu(p, @), Frr,(p,¢) }, where
Fau(p.a) = —p/2+ (1-p)(1-3p/2),

Fyr(p.q) = —p/2+ (1-p)(1—-q),

Frul,q) = (1 q)(1-3p/2),

Frp(p.a) = (1-9)*

(a). Ifp= 1/2 and ¢ = 7/8 then

Fau(p,q) = —1/8,

Fyr,(p, q) = —3/16,

Frup.q) =1/32,

Frp,(p.q) =1/64,

which shows that the optimal strategy is a hard first serve and a lob second serve.

(b). We have that

Fra,q) = Fur(p.¢) = 1-¢)(1-3p/2) +p/2 = (1-p)(1-q) = pq/2 > 0,
which shows that the strategy “L1-H2” is always inferior to the strategy “H1-L2”.



Exercise 4.

The arrival rates to the two facilities are obtained from the system
AL=9p+0.2X and Ay =9(1—p) + 0.5\,

which gives that A\; =2+ 8p and Ay = 10 — 5p.

We know that both F} and Fy are M /M /1 with p; = pg = 10,
so that p1 = A\ /pu1 = 0.2+ 0.8p and p2 = Ag/pe =1 — 0.5p.

(a) The system can be in steady state if and only if both p; < 1 and pa < 1 (with strict
inequalities), which is equivalent to that 0 < p < 1 (with strict inequalities).
In particular, the system can not be in steady state if p =0 or p = 1.

(b) Assume that 0 < p < 1. Then

A 2+38 10 A 10-5 10
le 1 = +p:—1 and LQZ 2 = p:_1+_7
pr—A1  8—8p 8—8p H2 — A2 5p op
so that the average number of customers in the system is
10 10 1.25 2
Ly + Ly = -2 — =24+ —+4-.
1+ Ly 5% 5 e
This number should be minimized with respect to p € (0,1).
1.25 2 1.25 2 2.5 4
Let f(p) = -2+ ——+ =. Then f'(p) = —— — — and f(p) = + .
) b R (e A (e E

Since f”(p) > 0 for all p € (0,1), f is strictly convex on this interval, so we search for a
solution to f’'(p) = 0, which after some simple calculations gives that the unique optimal p is
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(c) Assume again that 0 < p < 1. Then the steady state probability that facilty Fj is empty
is 1 — p1 = 0.8(1—p) and the corresponding probability for Fy is 1 — po = 0.5p. The steady
state probability that the whole system is empty is then given by (1—p1)(1—p2) = 0.4p(1—p),
which should be maximized. Simple calculations shows that the unique optimal p is p = 0.5,
in which case the steady state probability for an empty system is 0.1.

(d) Let Vj be the expected time for a customer who arrives to facility F}; to go through
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Mj_/\j,SO a 1 8—8p an 2 5p

Let W; be the expected remaining time in the system for a customer who arrives
to facility F;. Then Wy = Vi +0.5Wy and Wo = Vo + 0.2W7, which gives that
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A randomly chosen new customer will with probablity p first go to F, and with probablity

1—p first go to F5. Therefore, the expected total time in the system for a new customer is

1 (248  10-5p\  Li+Ly
9\ 8—8p 5p 9

The optimal p is thus the same as in (b) above.

that facility once. Then V; =

Wy =

pWi+ (1-p)Ws =



Exercise 5.

Assume that the false coin is known to be among n specific coins.
If Hook puts k coins in each bowl, where k£ > 1 and 2k < n, then one of the
following two things will happen.

The two bowls contain equal weights, in which case the false coin is among the left out n—2k
coins. After this, the minimal numbers of additional trials (in worst case) is V (n—2k).

The bowls contain different weights, in which case the false coin is among the k coins in the
lightest bowl. After this, the minimal numbers of additional trials (in worst case) is V (k).

So after the trial with & coins in each bowl, the minimal numbers of additional trials will (in
worst case) be the largest of the two numbers V(n—2k) and V (k), i.e. max{V (n—2k), V(k)}.

Note that if n is even and k = n/2, then the bowls cannot contain equal weights, so then
max{V(n—2k), V(k)} ought to be replaced simply by V(k). But this replacement is not
needed if we deﬁne V(0) =

The above discussion leads to the recursive equation:
Vn )—1—|—m1n{max{V(n 2k), V(k)} },

where k must satisfy 1 < k < 5, and where V(0) = V(1) = 0.

V(2)=1+ mkin{max{V(Q—2k:), V(k)}} =1+ {max{V(0), V(1)} } =1. Optimal k£ = 1.
V(i3) =1+ mkin{maX{V(fS—Qk), V(k)}} =14+ {max{V(1), V(1)} } =1. Optimal k = 1.
V(4) = 1+mkin{max{V(4—2k), V(k)}} = 14min {max{V(2), V(1)}, max{V(0), V(2)} } =
=1+ min {max{1l, 0}, max{0, 1} } =1+ 1=2. Optimal £ =1 or 2.

V(5) = 1+mkin{max{V(5—2k), V(k)} } = 14+ min{ max{V(3), V(1)}, max{V (1), V(2)} } =
= 1+ min { max{1, 0}, max{0, 1} } =1+ 1=2. Optimal k =1 or 2.

V(6) =1+ mkin{max{V(G—%:), V(k)}} =

1+ min { max{V(4), V(1)}, max{V(2), V(2 )} ax{V(0), V(3)} } =
1 + min { max{2, 0}, max{1, 1}, max{0, 1} } =1+ 1= 2. Optimal k£ =2 or 3.

V() =1+ mkln{max{V('?—Qk:), V(k)}} =

1+ min { max{V(5), V(1)}, max{V'(3), V(2)}, max{V (1), V(3)} } =
1 + min { max{2, 0}, max{1, 1}, max{0, 1} } =1+ 1= 2. Optimal £ =2 or 3.

V() =1+ mkin{max{V(S—2k:), V(k)}} =

1+ min { max{V(6), V(1)}, max{V(4), V(2)}, max{V(2), V(3)} max{V(0), V(4)} } =
1 + min { max{2, 0}, max{2, 1}, max{1, 1}, max{0, 2} } =1+ 1=2. Optimal k =3

V() =1 —I—mkln{maX{V(Q—%:), Vik)}} =

1+ min { max{V(7), V(1)}, max{V(5), V(2)}, max{V (3), V(3)} max{V (1), V(4)}} =
1 + min { max{2, 0}, max{2, 1}, max{1, 1}, max{0, 2} } =1+ 1=2. Optimal k = 3.

So the optimal strategy for Captain Hook is to first put 3 coins in each bowl and let 3 coins
be left out. After the first balancing, there will be just 3 coins to choose between. Then one
more balancing is needed, with one coin in each bowl and one left out.



