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Abstract. When using the Pontryagin Maximum Principle in optimal control problems the most diffi-
cult part of the numerical solution is associated with the nonlinear operation of the maximization of the
Hamiltonian over the control variables. For a class of problems, the optimal control vector is a vector
function with continuous time derivatives. A method is presented to find this smooth control without
the maximization of Hamiltonian. Three illustrative examples are considered.

1. Description of the method

Let us consider the classical optimal control problem (OCP), Pontryagin et. al. 1962, Lee and Markus,
1967, Athans and Falb, 1966, Pinch, 1993, in the form

/0 fo(z, u)dt — min (1)
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z(0) = o, «(T) = 7. (3)

where the control variables u(t) € R™, the state variables z(¢) € R®, and f(z,u) € R™ are column
vectors, with m < n. The right-hand side functions of the state equations (2), f(x,u) and the perfor-
mance index function fo(2,u) are smooth over all arguments. Tt is assumed that that there are no other
constraints except of (3). The column vector p(t) € R™ is the vector of costate variables. According to
Pontryagin’s Maximum Principle (PMP), Pontryagin et al. (1962), the Hamiltonian H, is defined as

H =p" f(x,u) — pofo(z,u). (4)
Let us consider the “normal” case when pg > 0. Without loss of generality we set py = 1, leading to
H = pr(J:,u) — fo(z, u). (5)

According to PMP the following system of differential equations for the co-state variables p holds
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If there exists an optimal solution (x*, u*), then, according to PMP, there exists a costate vector p* such
that the following conditions are satisfied:

(a) H(z*,ux,px) > H(z*, u, px), meaning that H has maximum over the control u,

(b) the variables x*, p* satisfy equations (2), (6),



(c) the end conditions (3) must be hold.

In order to find the solution (x*,u*,p*) from PMP, the two-point boundary problem for the system of
equations (2)-(6) must be solved with the end conditions (3). At each point in time, u is determined
from the condition (a). There are as many unknown values p(0) as given end conditions (7") = z7. The
maximization problem in (a) is often computationally costly.

Since no other constraint than (3) is present, it follows from (a) that the control vector u* has to satisfy
the necessary conditions

0H

du
Often these equations are nonlinear in u*. In the following, we shall omit the symbol * for simplicity.
From (5) and (7) one gets the system of equations
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where 0 fy/0u is a row vector, and the dimension of the Jacobian 8f/0u is nxm. The equations (8) are
linear in p. As mentioned above, according to the usual procedure for solving an OCP with PMP, the

0. (7)

nonlinear system of m equations (8) must be solved in order to find the control vector u as a function
of the costate vector p and the state vector 2. In contrast, by linear operations on (8) it is very easy
to compute m elements of the costate vector p as a vector function of the state vector z, the control
vector u, and the n — m remaining costates. Let us assume that the rank of the Jacobian matrix 9f/du
is equal to m. This means that there exists a non-singular mxm sub-matrix. We shall re-index the
state variables in such a manner that the m variables corresponding to this sub-matrix have indices 1
to m, and we shall denote the sub-vectors of the corresponding right-hand functions in (2) as f?, the
costates as p?, the sub-vector of the remaining right-hand functions as f?, and the remaining costates
as p®. Consequently,

x=[2% 2 p = [p%0); Flz,u) = [f*(2,u); (2, u)].

The equations (8) can be rewritten as

paTafa+ bTa_fb_afo

Ou p ou  Ou =0, (9)
From here follows that
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where for convenience we have defined the vector A. Taking the derivative of the co-state p® from (10)
with respect to time ¢, one gets

dp® 0A OAdu  OA dp®
o e Y e e ar (11)

The differential equations for the costates (6) can be rewritten as
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By substituting the expressions for p® from (10) into the right-hand sides of (12, 13), and exploiting
the fact that the right-hand side of (12) is equal to the right-hand side of (11), one gets, with a simple



matrix transformation, the equations for the time derivatives du/dt as functions of z, p®, and u only, as
follows. Denoting

L 04

B=%5.

we shall assume that B is non-singular. Thus,
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where the notation F(z,p® u) is defined. Substituting the expression for A(z,p®, u) from (10) into the
right-hand side of (13), we shall denote the resulting expression as S(z,p®, u). Thus we have

dpb B

- S(z,pb, u).
Thus, the problem is reduced to integrating the system of equations
d
= Flapu),
d:
d_‘: = f(xa U),
d b
d_I:f = S(z,pb,u). (15)

with the initial values z(0) = zq, and the appropriate initial values u(0) = ug, p?(0) = p®; to be found.
The end conditions #(7T") = x7 have to be satisfied. The number of integrated equations (15) is the same
as in the PMP algorithm, namely 2n, where instead of the differential equations for p® we have the dif-
ferential equations for u. Note that no maximization of the Hamiltonian, nor any non-linear operations
are needed for the determination of u(t). Instead, just a number of linear matrix operations have to be
performed, which is a much easier task.The following theorem can be formulated based on the notations
and derivations given above.

Theorem. If the OCP problem (1-3), m < n, has the optimal solution z*, u* such that u* is smooth and
belong to the open set U, and if also the problem is normal in the sense that the costate pf can be set
to 1, the Jacobian 8f®/du is non-singular, the Jacobian B is non-singular, then the optimal states, z*,
costates, p*°, and control u* satisfy the equations (15).

Note. In the case when n = m the set of variables and costates z®, p® is empty and the equations

(15) are changed accordingly. In this case the last set of these equations, namely those related to 7,
vanishes.

2. Rigid body rotation

As the first example, let us consider the following axisymmetric rigid body rotation problem (Athans

and Falb, 1963):

dzx B
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d

d—? = —ax+ us (16)

The variables 2 and y are the components of the angular velocity that need to be stopped, i.e. the final
conditions are

2(T) = 0,y(T) =0, (17)



and final time 7' is given. The performance index to be minimized is chosen as

1 /T
J= Z/o (u} + u2)?dt — min

Here, according to (10), the vector A has the form

w1 (uf + u3)
=A= 18
p [ uﬂu%—{—u%) ] (18)
The costate equations are
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a
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One may notice that the Hamiltonian is strictly concave. Here dA/0z = 0. The matrix B is symmetric
and has the form

3u% + u% 2uqus )

B = ( ATRRID u% + 3u% (20)
with ) )
_ 1 uf + 3u —2uius
1_ 1 2 .
B = (3[u% + ug]2)( —2uius 3u% + u2? ) (21)
Extracting the time derivatives for uy, us one gets after some simplifications
Pl )= " (22
A
implying
dU1
— = aus,
dt
d
% = —au; (23)

From (23) it is easily seen that

u? + ud = C? = const

Hence the control vector (u,us)” has constant length C' > 0, and it rotates around the origin of the
coordinate system in the u-plane with the constant angular velocity a. Introducing the variables r, 8 by
the coordinate transformation

z rsin 6

y = rcosf (24)

one realizes that the system of equations (16), (23) has the solution

w = —C—
I2+y2
_ Y p
uy = —C—F— (25)

Thus, the initial value of the vector u = [u1;us] is collinear and has opposite direction to the initial
vector of the state coordinates [x;y]. To check the admissibility of (25), one may substitute (24) into (16)



and find the equations for the time derivatives of r, . To find the derivative of r, the resulting equations
must be multiplied by sin #, cos 8, respectively, and then summed. To find the derivative of # the same
equations must be multiplied by cos# and —sin , respectively, and then summed. Substituting (25) into
the obtained equations one gets

dr
dt
df
dt

= -C
= a. (26)

Thus one can see that both vectors (uy,u2)” and (z,y)” rotate with the same angular velocity a and
their collinearity is maintained in steady-state.

Let us denote y/2(0)2 + y(0)2 = R. From the final conditions (17), and the first of equations (26),
one easily gets that u1(0)/C = —2(0)/R, u5(0)/C = —y(0)/R, and C = R/T. Hence, the problem is

completely solved without maximization of the Hamiltonian.
3. Optimal spacing for greenhouse lettuce growth

Let us consider the problem of the optimal variable spacing policy for greenhouse lettuce growth, see
lIoslovich and Gutman, 1999; Seginer and loslovich, 1999; Ioslovich and Gutman, 2000. The dynamical
model of the lettuce growth in constant climate conditions has the form

dv
o= aG(W), (27)
where v is the dry mass of a single plant [kg/m?], a is the spacing [m?/plant], G is the net photosynthesis
[kg/m?], W is the plant density [kg/m?]. The net photosynthesis G(W) is a strictly concave function.
The spacing is variable in time and must be adjusted in an optimal way during the growth process to
minimize the cost of the process, which is set as

T
J:/ acpdt (28)
0

where cr[$/m?s] is the price of rent, including operational costs. The spacing and plant density are
connected via

v=aW, (29)

thus plant density W can be considered as a control variable instead of the spacing a. The state equation
and the expression for the performance index can be rewritten in the form

dv v
i WG(W),
J /T Y cpdt (30)
= —C
o W

The final time T is free and the final moment 7' is determined through the condition
v(T) = vrp, (31)

where vr is a given final marketable weight of a single lettuce plant. The Hamiltonian, H, has the form

v

H =
W

(pG(W) = cr), (32)

where p is the scalar co-state variable. The maximization of the Hamiltonian over the control W gives

oH v
ow — w2

(PG (W) — cr) %S—VGV =0 (33)



From here the value of p is found as

CR
pe R (34)
GW) - W &
The differential equation for the co-state p has form
dp  0H  pG(W)—cr
P T e
Substituting equation for p from (34) to (35) one gets after some transformations
d oG
dp___cndg (30
dt (G- Way)
Differentiating (34) with respect to ¢ one gets
dp dW CRW% (37)
dt — dt (G- w292 '
From (36) and (37) one gets the differential equation for the control variable W as follows:
W _ GG i)
- weaer (38)
dt W aw=
For the free final time we have the transversality condition
H(T)=0 (39)

Substituting the expression for p (34) and the expression for H (32) into the equation (39) one gets for
the final moment T the following equality

G

CR 3w
__CRewW 40
"G-wig) “0)

From (40) and (38) it follows that there exists an optimal steady state solution with the constant control

oG(W) _
5w =0 (41)

Thus, the optimal lettuce density is constant and corresponds to the maximal net photosynthesis. The

value W* which satisfies the condition

problem is solved without maximization of the Hamiltonian, which in this case seems rather simple, but
unexpected in advance. However, if the final time is not free, and is fixed a prior: at some non-optimal
value t;, the equation (38) makes is possible to avoid the maximization of the Hamiltonian, which
constitutes a difficult numerical problem for each time step. For details, see Toslovich and Gutman,

1999.

4. Maximal area surrounded by a curve of given length

This is very well known problem described in e.g. Gelfand and Fomin, 1969, as a variational, iso-
perimetric problem. We shall solve it in the case of given parameters as an OCP.

1
/ r1dt — max (42)
0
d.’lfl
— = 43
a (43)

o2 _ it (44)

dt



The considered end conditions are
21(0) = 21(1) =0, 22(0) =0, z2(1) = 7/3. (45)

The Hamiltonian has the form
H=piu+ps/1+u2+z. (46)

The differential equations for the costate variables are

dp:

mw

dt ’

dp2

a2 _ 4

o (47)

From (46) one gets

O 4 =0 (48)
ou TP T |

In fact (48) is possible to solve with respect to u. However this is not always the case in general, and we
want to demonstrate our new method. Here we use p; as p, and py as py. From (48) the value of p; is
found in the form

u
= —py———. 49
b1 P2 Tt (49)
Taking the derivative with respect to ¢ of (49) and using (47) one gets
d 14 u2)3/2
i G e (50)

dt P2
Now, taking into account that ps is a constant according to (47), we have to integrate numerically the
equations (43), (44), (50) in order to find the unknown constants ps and u(0) such that the conditions

(45) are satisfied. The answer is p; = —1, and u(0) = 1/,/(3). The resulting curve z;() is a part of a
circle. As in the other examples, we did not have to solve the nonlinear equation (48).

5. Conclusion

A method for extracting smooth optimal control for a class of optimal control problems was presented
and three illustrative examples were shown. The method does not require the maximization of the
Hamiltonian over the control, and instead substitute the ODE for the part of costates by the ODE for
the smooth control.
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