

KTH Matematik

5B1822: Geometric Systems Theory

Homework 1

Due November 16, 16:50pm, 2004
You may discuss the problems in group (maximal three students in a group), but each of you must write and submit your own report. Write the names of persons that you cooperated with.

1. $[2 p]$. Consider the system

$$
\begin{aligned}
\dot{x} & =\left(\begin{array}{cccc}
2 & 3 & -2 & -1 \\
0 & 0 & 2 & 1 \\
0 & 0 & 0 & 1 \\
1 & 2 & 0 & 0
\end{array}\right) x+\left(\begin{array}{cc}
0 & -1 \\
0 & 1 \\
1 & 0 \\
-1 & 0
\end{array}\right) u \\
y & =\left(\begin{array}{lll}
1 & 1 & 0
\end{array}\right) x
\end{aligned}
$$

Compute \mathcal{V}^{*} and find all friends F of \mathcal{V}^{*}.
2. $[2 p]$. Consider the same system as in Problem 1.
(a) Given $x_{1}=(0,0,0,0)^{T}$ and $x_{2}=(0,0,1,-1)^{T}$, can we find a control $u=$ $F x+G v$ such that in some finite time $T, x\left(T, x_{1}\right)=x_{2}$ while $y(t)$ is kept at 0 (i.e. $y(t)=0$ for all $0 \leq t \leq T)$? If the answer is yes, please give such an F and G. (Here, $x\left(t, x_{1}\right)$ is the solution of $\dot{x}=A x+B u, x(0)=x_{1}$.)
(b) If we replace x_{2} by $(-1,1,0,-2)^{T}$, can we also find such a control?
3. [3p]. Consider

$$
\dot{x}=\left(\begin{array}{ccc}
-2 & 1 & 0 \\
0 & -2 & 2 \\
1 & 2 & 0
\end{array}\right) x+\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right) u+E w
$$

where w is the disturbance.
(a) For $y=\left(\begin{array}{lll}1 & 1 & 0\end{array}\right) x$, derive the minimum constraint on E such that $D D P$ is solvable. Find a state feedback $u=F x+v$ which solves the $D D P$ problem.
(b) For any $u=F x+v$ that solves the $D D P$ problem for the above y, what is the dimension of the unobservable subspace for the corresponding closed-loop system? On the other hand, is the system observable when $u=0$?
(c) Can we find an output feedback $u=K y+v$ that solves the $D D P$?
4. [4p]. Consider

$$
\begin{aligned}
\dot{x}_{1} & =-x_{1}+x_{2} \\
\dot{x}_{2} & =-x_{2}+2 x_{3}+u_{1} \\
\dot{x}_{3} & =x_{1}-x_{4} \\
\dot{x}_{4} & =x_{2}-3 x_{4}-u_{1}+u_{2} \\
y_{1} & =x_{1}+x_{2} \\
y_{2} & =x_{3}
\end{aligned}
$$

(a) What is the relative degree for the system?
(b) Convert the system into the normal form and compute the zero dynamics.
(c) What is \mathcal{V}^{*} ?
(d) What is \mathcal{R}^{*} contained in ker C ?

