5B1822: Geometric Systems Theory

Homework 1

Due November 18, 16:50pm, 2005
You may discuss the problems in group (maximal two students in a group), but each of you must write and submit your own report. Write the name of the person you cooperated with.

1. [3p]. Consider the system

$$
\begin{aligned}
\dot{x} & =\left(\begin{array}{cccc}
-1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & -1 & 1 \\
1 & 1 & 0 & -2
\end{array}\right) x+\left(\begin{array}{ll}
1 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 1
\end{array}\right) u \\
y & =\left(\begin{array}{lll}
0 & 1 & 1
\end{array} 0\right) x
\end{aligned}
$$

(a) Compute \mathcal{V}^{*} and find all friends F of \mathcal{V}^{*}.
(b) Computer \mathcal{R}^{*} that is contained in $\operatorname{ker} C$.
2. $[2 p]$. Consider the same system as in Problem 1.
(a) Given $x_{1}=(0,0,0,0)^{T}$ and $x_{2}=(1,0,0,0)^{T}$, show that for any given finite time T, we can find a control $u=F x+G v$ such that $x\left(T, x_{1}\right)=x_{2}$ while the trajectory of $x\left(t, x_{1}\right)$ is a straight line. (Here, $x\left(t, x_{1}\right)$ is the solution of $\dot{x}=A x+B u, x(0)=x_{1}$.)
(b) If we let $x_{1}=(0,1,-1,0)^{T}$, and $x_{2}=(1, k,-k, 0)^{T}$, for what values of $k x_{2}$ can be reached in some finite time from x_{1} ?
3. $[2 p]$. Consider

$$
\begin{aligned}
\dot{x} & =\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-3 & -2 & -1
\end{array}\right) x+\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) u+E w \\
y & =\left(\begin{array}{lll}
-1 & 0 & 1
\end{array}\right) x
\end{aligned}
$$

where w is the disturbance.
(a) Derive the minimum constraint on E such that $D D P$ is solvable. Find a state feedback $u=F x+v$ that solves the $D D P$ problem.
(b) Can we find a $u=F x+v$ that solves the $D D P$ problem for any E that meets the minimum constraint obtained above while makes the closed-loop system stable, i.e. $A+B F$ has only eigenvalues with negative real part?
4. [5p]. Consider

$$
\begin{aligned}
\dot{x}_{1} & =-x_{1}+x_{4}+u_{1} \\
\dot{x}_{2} & =x_{1} \\
\dot{x}_{3} & =x_{2}+x_{4}+u_{2} \\
\dot{x}_{4} & =x_{2}+u_{2} \\
y_{1} & =x_{1}+x_{2} \\
y_{2} & =x_{3}-x_{4}
\end{aligned}
$$

(a) What is the relative degree for the system?
(b) Convert the system into the normal form and compute the zero dynamics.
(c) Is it possible to find a control such that the system can be steered from the initial state $x_{0}=(1-100)^{T}$ to $x_{1}=(2-200)^{T}$ at some finite time T while the trajectory that connects x_{0} and x_{1} is a straight line?
(d) Is it possible at all to find a control such that the system can be steered from the initial state $x_{0}=(1-100)^{T}$ to $x_{1}=(2-200)^{T}$ at some finite time T (no particular trajectory is required)?

