

5B1822: Geometric Systems Theory Homework 1 Due November 18, 16:50pm, 2005

You may discuss the problems in group (maximal **two** students in a group), but each of you **must** write and submit your own report. Write the name of the person you cooperated with.

1. [3p]. Consider the system

$$\dot{x} = \begin{pmatrix} -1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -1 & 1 \\ 1 & 1 & 0 & -2 \end{pmatrix} x + \begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 1 \end{pmatrix} u$$

$$y = (0 \ 1 \ 1 \ 0) x.$$

- (a) Compute \mathcal{V}^* and find all friends F of \mathcal{V}^* .
- (b) Computer \mathcal{R}^* that is contained in ker C.
- **2.** [2p]. Consider the same system as in Problem 1.
 - (a) Given $x_1 = (0, 0, 0, 0)^T$ and $x_2 = (1, 0, 0, 0)^T$, show that for **any** given finite time T, we can find a control u = Fx + Gv such that $x(T, x_1) = x_2$ while the trajectory of $x(t, x_1)$ is a straight line. (Here, $x(t, x_1)$ is the solution of $\dot{x} = Ax + Bu$, $x(0) = x_1$.)
 - (b) If we let $x_1 = (0, 1, -1, 0)^T$, and $x_2 = (1, k, -k, 0)^T$, for what values of $k x_2$ can be reached in **some** finite time from x_1 ?
- **3.** [2p]. Consider

$$\dot{x} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -3 & -2 & -1 \end{pmatrix} x + \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} u + Ew,$$

$$y = (-1 \ 0 \ 1)x$$

where w is the disturbance.

- (a) Derive the minimum constraint on E such that DDP is solvable. Find a state feedback u = Fx + v that solves the DDP problem.
- (b) Can we find a u = Fx + v that solves the *DDP* problem for any *E* that meets the minimum constraint obtained above while makes the closed-loop system stable, i.e. A + BF has only eigenvalues with negative real part?

4. [5p]. Consider

 $\begin{array}{rcl} \dot{x}_1 &=& -x_1 + x_4 + u_1 \\ \dot{x}_2 &=& x_1 \\ \dot{x}_3 &=& x_2 + x_4 + u_2 \\ \dot{x}_4 &=& x_2 + u_2 \\ y_1 &=& x_1 + x_2 \\ y_2 &=& x_3 - x_4 \end{array}$

- (a) What is the relative degree for the system?
- (b) Convert the system into the normal form and compute the zero dynamics.
- (c) Is it possible to find a control such that the system can be steered from the initial state $x_0 = (1 1 \ 0 \ 0)^T$ to $x_1 = (2 2 \ 0 \ 0)^T$ at some finite time T while the trajectory that connects x_0 and x_1 is a straight line?
- (d) Is it possible at all to find a control such that the system can be steered from the initial state $x_0 = (1 1 \ 0 \ 0)^T$ to $x_1 = (2 2 \ 0 \ 0)^T$ at some finite time T (no particular trajectory is required) ?