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Optimization

Optimization is about the abstract problem of finding a minimum point, x, of
a real valued function, f , in some set X,

min
x∈X

f(x).

We refer to the function f as the objective function and the set X as the
feasible set. This note is intended to give the fundamentals of optimization in a
concise manner. It does not cover numerical methods to solve different kind of
optimization problems. For this we refer the reader to a course on optimization
or numerical analyis. We will only consider the finite-dimensional case, that is
when X is some subset of Rn.

Observe, that problems that naturally come in maximization form, for example
profit maximization, can be converted into a minimization problem by changing
the sign of the objective.

Optimality

A point x̄ ∈ Rn is said to be a global minimum of a function f : Rn → R,
if f(x) ≥ f(x̄) for all x ∈ Rn. A point x̄ is said to be a local minimum if
f(x) ≥ f(x̄) for all x in a neighborhood of x̄, i.e. for all x such that ‖x− x̄‖ ≤ ε
for some ε > 0.

Observe that a minimization problem need not have optimal solutions, local or
global, for example minx≥0 e

−x does not have a solution.

Convexity

An important concept in optimization is convexity because it makes all local
optima global.
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A set C ⊂ Rn is said to be convex if for all x, y ∈ C and α ∈ [0, 1] it holds that
αx+ (1− α)y ∈ C.

A function f : Rn → R is said to be convex if the function lies below its cords,
i.e. f(αx + (1 − α)y) ≤ αf(x) + (1 − α)f(y) for α ∈ [0, 1]. The function f is
said to be strictly convex if the previous inequality is strict for α ∈ (0, 1).

If f is at least twice continuously differentiable one can show that the following
three statements are equivalent. Here ∇f(x) denotes the gradient of f at x,
that is the vector of partial derivatives, and ∇2f(x) denotes the Hessian of f
at x, that is the matrix of second order partial derivatives.

(i) f is convex on the whole Rn.

(ii) f(x) ≥ f(x̄) +∇f(x̄)T (x− x̄) for all x̄ and x ∈ Rn (i.e. the function lies
above its tangents).

(iii) ∇2f(x) is positive semidefinite (hT∇2f(x)h ≥ 0 for all h ∈ Rn) for all
x ∈ Rn.

It follows from (ii) that if f is convex and∇f(x̄) = 0 then x̄ is a global minimum.

Taylor

Assume that f : Rn → R is twice continuously differentiable and assume that
you have calculated f(x̄), ∇f(x̄) and ∇2f(x̄) at a given point x̄. Then f can
be approximated in a neighborhood of x̄ in the following manner:

f(x) = f(x̄+ d) = f(x̄) +∇f(x̄)Td+
1
2
dT∇2f(x̄)d+ o(‖d‖2)

where o(‖d‖2)/‖d‖2 goes to zero when ‖d‖ goes to zero.

Using this one can show that if ∇f(x̄) = 0 and ∇2f(x̄) is positive definite then
x̄ is a local minimum of f .

Karush-Kuhn-Tucker conditions (KKT-conditions)

Consider a non-linear optimization problem on the following form.

(P≤)
min f(x)
subject to gi(x) ≤ bi, i = 1, . . . ,m,

x ∈ Rn.

Definition x̄ ∈ Rn is a KKT-point for (P≤) if there exist real scalars λ1, . . . , λm
that together with x̄ satisfy the following conditions:
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(i) ∇f(x̄) +
∑m

i=1 λi∇gi(x̄) = 0 (n conditions)

(ii) gi(x) ≤ bi, i = 1, . . . ,m

(iii) λi ≥ 0, i = 1, . . . ,m

(iv) λi(gi(x̄)− bi) = 0, i = 1, . . . ,m

The KKT-conditions above are normally necessary conditions for x̄ to be a local
minimum to (P≤) (i.e. x̄ is a local minimum implies that x̄ is a KKT-point).
For this to be true the problem (P≤) need to fulfill some sort of “Constraint
Qualification” (CQ). Two such (CQ) are

(i) all gi in (P≤) are linear, or

(ii) all gi are convex functions and there exists at least one point x such that
gi(x) < bi for all i.

For convex problems that is problems where f and all the gi’s are convex func-
tions the KKT-conditions above are sufficient, i.e. x̄ is a KKT-point implies
that x̄ is a global minimum point..

Lagrange conditions

Consider now a problem with only equalities instead of inequalities, i.e. a
problem on the following form.

(P=)
min f(x)
subject to gi(x) = bi, i = 1, . . . ,m,

x ∈ Rn.

In this case the KKT-conditions are simplier and one usually call them Lagrange
conditions.

Definition x̄ ∈ Rn satisfy the Lagrange conditions (P=) if there exist real
scalars λ1, . . . , λm which together with x̄ satisfy the following conditions:

(i) ∇f(x̄) +
∑m

i=1 λi∇gi(x̄) = 0 (n conditions)

(ii) gi(x) = bi, i = 1, . . . ,m.

If x̄ is a local optimal solution to (P=), and (P=) satisfy a constraint qual-
ification, then x̄ satisfy the Lagrange conditions of (P=). Two examples of
constraint qualifications to (P=) are

(i) all gi in (P≤) are linear, or
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(ii) the m gradients ∇g1(x),∇g2(x), . . . ,∇gm(x) are linearly independent for
all x.

The Lagrange function of (P=) is defined as follows

L(x, λ) = f(x) +
m∑
i=1

λi(gi(x)− bi).

Using this notation one can write the Lagrange conditions on the following
form:

(i) ∂L(x̄,λ̄)
∂xj

= 0, j = 1, . . . , n,

(ii) ∂L(x̄,λ̄)
∂λi

= 0, i = 1, . . . ,m.

Note, however, that (x̄, λ̄) is normally not a minimum nor a maximum point of
L, but typically a saddle point.

For certain types of problems the Lagrange conditions are also sufficient opti-
mality conditions. One such problem type is when the functions gi are all linear
functions and f is a convex differentiable function.

Duality and Everett’s theorem

Given the problem

(P)
min f(x)
subject to gi(x) ≤ 0, i = 1, . . . ,m

x ∈ X

one say that for fixed λ the problem

(Pλ)
min f(x) +

∑m
i=1 λigi(x)

subject to x ∈ X

is a relaxation of (P) if λi ≥ 0.

Let us denote the optimal objective value of (Pλ) by φ(λ). Then it is easy to
verify that φ(λ) ≤ f(x) for all x feasible to (P). This means that φ(λ) provides
a lower bound on how well it is possible optimize f . It is then natural to try to
make this bound as tight as possible, that is to maximize φ(λ). This is the so
called Lagrangean dual problem of (P):

(D)
max φ(λ)
subject to λ ≥ 0.

Relating to this we have the following simple but powerful theorem.

Theorem (Everett) Suppose that x(λ) solves (Pλ) then x(λ) also solves the
problem (P) but where the zeros of right-hand side of the constraints have been
replaced by gi(x(λ)).
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Quadratic functions

A function p : Rn → R is said to be quadratic if it can be written on the form

p(x) =
1
2
xTQx+ cTx+ c0 =

1
2

n∑
i=1

n∑
j=1

qijxixj +
n∑
i=1

cjxj + c0,

where Q is a symmetric real-valued n× n-matrix, c ∈ Rn and c0 ∈ R.

The gradient of p can be written as

∇p(x) = Qx+ c

and the Hessian
∇2p(x) = Q.

It is easy to show that p is strictly convex if and only if Q is positive definite
(hTQh > 0 for h 6= 0) , and that p is convex if Q is positive semidefinite
(hTQh ≥ 0 for all h).

Assume that ∇p(x̄) = 0, that is Qx̄ = −c then simple calculations show that
p(x) = p(x̄) + 1

2(x− x̄)TQ(x− x̄) for all x ∈ Rn. Now, if Q is positive definite
then apparently p(x) > p(x̄) for all x 6= x̄ which implies that x̄ is a global
minimum point to p.

Quadratic problems and their optimimality conditions

If the objective is a quadratic function and the the constraints are linear, then
the problem is called a QP-problem:

(QP)
min 1

2x
TQx+ cTx

subject to aTi x = bi, i = 1, . . . ,m
xj ≥ 0, j = 1, . . . , n.

Here, we have the constraints on so called standard form, i.e. all the variables
need to be non-negative and the linear constraints are equalities. Using matrix-
notation, we may write the feasible set as {x |Ax = b, x ≥ 0}.

A point x̄ is said to be a KKT-point of (QP), if there exist multipliers λi and
µj ≥ 0 such that

(i) Qx̄+ c+
∑m

i=1 λiai − µ = 0 (n conditions)

(ii) aTi x̄ = bi, i = 1, . . . ,m

(iii) µj ≥ 0, j = 1, . . . , n

(iv) µj x̄j = 0, j = 1, . . . , n

If all the variables xj in (QP) are free to take any value then the KKT conditions
simplify to the Lagrange conditions that there exist λi such that

5



(i) Qx̄+ c+
∑m

i=1 λiai = 0 (n conditions)

(ii) aTi x̄ = bi, i = 1, . . . ,m.

Note that finding such x̄ and λ amounts to solving a linear system of equations
with m+ n unknowns and the same number of equations.

We have the following theorem.

Theorem Suppose that Q is positive semidefinite then x̄ is a KKT-point if
and only if x̄ is an optimal solution to (QP).

Linear programming

A very simple but useful problem class is linear programming. A linear program
on so called standard form is

(LP)
min

∑n
j=1 cjxj

subject to
∑n

j=1 aijxj = bi, i = 1, . . . ,m
xj ≥ 0, j = 1, . . . , n.

or using matrix notation

(LP)
min cTx
subject to Ax = b,

x ≥ 0.

What are the KKT conditions for this problem?

Linear programming is important for several reasons. First, and perhaps most
important is that many decisions problems in the real world, lend themselves to
be modelled very well by linear programs. Second, all convex problems can be
approximated to arbitrary accuracy using linear programming. A third reason
is that there exist very good methods to solve linear programming problems,
and problems of huge dimensions can be solved. For example, in so called
crew scheduling problems it is not unusual that airlines on a routine basis solve
problems with millions of variables (n) and several thousand constraints (m).
Also in portfolio analysis some extraordinary large linear programming models
have been formulated and successfully solved and applied for financial decision
making.
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