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Brief solutions

1. (a) The dual (DLPδ) of (LPδ) may be written as

(DLPδ)
max (b + δe3)Ty

subject to ATy + s = c,
s ≥ 0,

The given y and s are feasible to (DLPδ), so insertion of the given y gives and
underestimate of the optimal value of (LPδ) as 63 + 6δ. This underestimate is
exact as long as y and s are optimal to (DLPδ).

(b) The optimality of the given y and s corresponds to the corresponding basic
variables being nonnegative. This gives xB = B−1(b+ δe3) ≥ 0. Insertion gives

1
2
3

 + δ


2

−1
1

 ≥


0
0
0

 ,

i.e., −1/2 ≤ δ ≤ 2. Hence, the underestimate is exact for −1/2 ≤ δ ≤ 2.

2. (See the course material.)

3. (a) For a fix vector u ∈ IRn, Lagrangian relaxation of the first group of constraints
gives

ϕ(u) = minimize
n∑

i=1

n∑
j=1

cijxij −
n∑

j=1

fjzj −
n∑

i=1

ui

 n∑
j=1

xij − 1


subject to

n∑
i=1

aixij ≥ bjzj , j = 1, . . . , n,

xij ∈ {0, 1}, zj ∈ {0, 1}, i = 1, . . . , n, j = 1, . . . , n,

This problem decomposes into one problem for each j as

minimize
n∑

i=1

(cij − ui)xij − fjzj

subject to
n∑

i=1

aixij ≥ bjzj ,

xij ∈ {0, 1}, zj ∈ {0, 1}, i = 1, . . . , n,
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for j = 1, . . . , n. For each j, we may solve two problems by equating zj = 0
and zj = 1 respectively. For zj = 0 we obtain xij = 0 or xij = 1 depending on
whether cij −ui is positive or negative. For zj = 1 we obtain a “knapsack-like”
problem in the xij-variables, i = 1, . . . , n.

(b) If these constraints are relaxed, the resulting Lagrangian relaxation problem
has the integrality property, i.e., the extreme points are integer valued. Thus,
the dual problem gives the same bound as the linear programming relaxation.
We would thus expect the relaxation of the previous exercise to give a tighter
bound.

4. As W/w1 = 42
3 , the cut patterns with w1-rolls only is given by (4 0 0)T . The two

other analogous cut patterns are given by (0 2 0)T and (0 0 2)T .

Consequently, we obtain A1 = (4 0 0)T , A2 = (0 2 0)T and A3 = (0 0 2)T , so that

B =


4 0 0
0 2 0
0 0 2

 , xB = B−1b =


10
45
25

 , y = B−Te =


1
4
1
2
1
2

 ,

with e = (1 1 1)T . As y ≥ 0 no slack variables enter the basis.

We obtain the subproblem

1 − 1
4maximize α1 + 2α2 + 2α3

subject to 3α1 + 5α2 + 7α3 ≤ 14,
αi ≥ 0, integer, i = 1, 2, 3.

We may enumerate the feasible solutions for this small problem to conclude that
the optimal solutions to the subproblem are given by α1 = 1, α2 = 2, α3 = 0, and
α1 = 3, α2 = 1, α3 = 0, with optimal value -1/4. As suggested in the statement, we
let A4 = (1 2 0)T with

pB = −B−1A4 =


−1

4

−1
0

 .

The minimum ratio occurs for αmax = 40, when the first basic variable becomes zero,
so that x1 leaves the basis. Hence,

B =
(

A4 A2 A3

)
=


1 0 0
2 2 0
0 0 2

 ,

so that

xB =


x4

x2

x3

 =


40
5

25

 , y = y = B−Te =


0
1
2
1
2

 ,
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with e = (1 1 1)T . As y ≥ 0 no slack variables enter the basis.

We obtain the subproblem

1 − 1
2maximize α2 + α3

subject to 3α1 + 5α2 + 7α3 ≤ 14,
αi ≥ 0, integer, i = 1, 2, 3.

We may enumerate the feasible solutions for this small problem to conclude that the
optimal value of the subproblem is zero. Hence, the linear program has been solved.

However, as it so happens that xB is integer valued, the original problem has been
solved as well. An optimal solution to the original problem is thus given by cutting
40 W -rolls according to cut pattern (1 2 0)T , 5 W -rolls according to cut pattern
(0 2 0)T and 25 rolls according to cut pattern (0 0 2)T .

(Note that this is very special. In general xB will not take on integer values.)

5. (a) There are four active constraints at x̄, all constraints except x3 ≥ 0. Hence, as
n = 3, there are more than n active constraints, i.e., the point is degenerate.

(b) The point x(t) = (−t − t 1)T , for t > 0, satisfies aT
i x(t) ≥ bi, i = 2, . . . , 5.

However, as aT
1x(t) = −2t − 2 < −2 = b1, x(t) 6∈ P . Hence, aT

1x ≥ b1 is not
redundant. We may analogously consider (−t t 1)T , (t − t 1)T , and (t t 1)T

for constraints 2, 3 and 4. Finally, the last constraint is not redundant, as
(0 0 − 1)T satisfies all constraints except number 5. Hence, the description of
P given by A and b contains no redundant constraints.

(c) A straightforward convergence proof implies strictly decreasing objective func-
tion value. This means a nonzero step. At a degenerate vertex, the simplex
method utilizes n linearly independent constraints to form the basis matrix.
As the vertex is degenerate, there are additional active constraints, so that the
steplength may be zero. Hence, it may not be assumed that the steplength is
nonzero and such a convergence proof would not hold.


