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Brief solutions

(a) We have At the first iteration constraint 3 is in the working set. The direction points
at (3 0)7, which is infeasible. The maximum step gives the new point (3 %)T
2e(m1=1) 4 231 — 229 2 Constraint 5 is added, which gives a vertex and hence a zero step. Constraint
Vi) = 229 — 211 and in particular Vf(z*) =] 0 |. 3 has a negative multiplier, and it is hence deleted. The direction points at
%3 9 (% %)T, which is feasible. Constraint 5 has a negative multiplier, and it is
hence deleted. The direction points at (3 2) which is feasible. No constraints
Since V f(2*) # 0, the point 2 does not satisfy the first-order optimality con- are active, and we have found the optimal solution.
ditions for an unconstrained problem. Hence, at least one constraint must be . . . .
active. The point «* is feasible, and the only potentially active constraint is (b) The iterates are illustrated in the figure below:

constraint 2 for ¢ = 2. Since

Vo) = (10 2)",

it follows that for ¢ = 2, the first-order necessary optimality conditions require
a Az > 0 such that 5

2 1
0 =10/ L
2 1

which holds for Ay = 2. Hence, for ¢ = 2, it holds that z* satisfies the first-order

necessary optimality conditions.

At the first iteration constraint 2 is in the working set. The direction points
at (2 U)T, which is feasible. Constraint 2 has a negative multiplier, and it is
hence deleted. The direction points at (3 2) which is feasible. No constraints

minimize 2e@—Y 4 (w2 —x1)% + l‘g are active, and we have found the optimal solution.

—
=
=

The objective function is convex, and the only active constraint is linear. Hence,
Z* is a global minimizer to

(NLP)
subject to 1 4+ x3 > 2.

But since 2* is feasible to (NLP) as well, and the only difference between
(NLP) and (NLP') is that we have omitted the constraints that are not active
at 2, it follows that 2* is globally optimal to (NLP) as well.

3. We have

(a) The iterates are illustrated in the figure below:
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4.
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(a) The QP subproblem becomes

(See

-

=

minimize %pTVJZmC(x(O), XO)p + V f(zTp
da A@@®) p> —g(2®).
Insertion of numerical values gives
min  Bp? — 5pips + Ip3 + 1
da  pr+p2=>-2,
p2 > —1,
p1 > —4.

If we let p(©) denote the optimal solution of the QP subproblem, we obtain 2 =
20 4 p. We obtain A(M) as the Lagrange multipliers of the QP subproblem.
If no slack variables are added, the linear system of equations becomes
V2, Lz NO) AT Az (V F(@O) — A(z(©)TA©)
AOA@)  —G(z®) —AX Gz )N — e

Insertion of numerical values gives

5 =5 1 0 1 Amy 3

-5 9 1 1 0 Ay 3

1 1 -2 0 off|-ax|=|np-21,
0 2 0 -1 0| -2ax =2
3.0 0 0 —-4)\-Ax w12

where the value of x4 has not been specified. We may for example let p = 1.
We obtain 2 = 2@ 4 Az and XD = AO) 0 AN, where a is a nonnegative
steplength such that g(z(® + aAz) > 0 and A©) + AN > 0.

the course material.)

The first-order optimality conditions may be written as

21001 1 1
12001 T2 2
00120 25 | =13
00210 24 3
11000/ \=x 2

The equations may be separated as one system for xj, z2, A1, and one system
for x3, x4. The solution is

1'*:(% 3 1)"‘, a3
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(b) To check whether 2* is a minimizer, we need to know the definiteness of Z'HZ.
‘We may compute Z as

-1 0 0
Lo o 200
Z = which gives ZTHZ=10 1 2
0 1 0
021
0 0 1

We see that Z'HZ is block diagonal with the second diagonal block indefinite.
With d = (0 1 — 1), we obtain d’Z7HZd < 0, so that H is not positive
semidefinite. Hence, 2™ is not a local minimizer to (EQP).

(c) Since 2* is feasible to the added constraint, it follows that a solution to the
first-order optimality conditions is given by

F=(3 g ) e=(3 o)

(d) We may compute Z as

-1 0
1 0 2 0

Z = which gives ZTHZ = .
0 1 06
0 1

We see that ZTH Z is diagonal and positive definite. Hence, * is a global min-
imizer to (EQP). Global optimality follows since for an equality-constrained
quadratic program, all local minimizers are global minimizers.



