
SF2822 Applied nonlinear optimization, final exam
Saturday December 15 2007 8.00–13.00

Brief solutions

1. (a) We have

∇f(x) =


2e(x1−1) + 2x1 − 2x2

2x2 − 2x1

2x3

 and in particular ∇f(x∗) =


2
0
2

 .

Since ∇f(x∗) 6= 0, the point x∗ does not satisfy the first-order optimality con-
ditions for an unconstrained problem. Hence, at least one constraint must be
active. The point x∗ is feasible, and the only potentially active constraint is
constraint 2 for c = 2. Since

∇g2(x) =
(

1 0 2
)T

,

it follows that for c = 2, the first-order necessary optimality conditions require
a λ2 ≥ 0 such that

2
0
2

 =


1
0
1

λ2,

which holds for λ2 = 2. Hence, for c = 2, it holds that x∗ satisfies the first-order
necessary optimality conditions.

(b) The objective function is convex, and the only active constraint is linear. Hence,
x∗ is a global minimizer to

(NLP ′)
minimize 2e(x1−1) + (x2 − x1)2 + x2

3

subject to x1 + x3 ≥ 2.

But since x∗ is feasible to (NLP ) as well, and the only difference between
(NLP ) and (NLP ′) is that we have omitted the constraints that are not active
at x∗, it follows that x∗ is globally optimal to (NLP ) as well.

2. (a) The iterates are illustrated in the figure below:

1
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At the first iteration constraint 3 is in the working set. The direction points
at (3 0)T , which is infeasible. The maximum step gives the new point (3 5

2)T .
Constraint 5 is added, which gives a vertex and hence a zero step. Constraint
3 has a negative multiplier, and it is hence deleted. The direction points at
(305

76
60
19)T , which is feasible. Constraint 5 has a negative multiplier, and it is

hence deleted. The direction points at (3 2) which is feasible. No constraints
are active, and we have found the optimal solution.

(b) The iterates are illustrated in the figure below:

At the first iteration constraint 2 is in the working set. The direction points
at (2 0)T , which is feasible. Constraint 2 has a negative multiplier, and it is
hence deleted. The direction points at (3 2) which is feasible. No constraints
are active, and we have found the optimal solution.

3. We have

∇f(x(0)) =

(
1
0

)
, g(x(0)) =


2
1
4

 ,
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A(x(0)) =


1 1
0 1
1 0

 , ∇2
xxL(x(0), λ(0)) =

(
15 −5
−5 9

)
.

(a) The QP subproblem becomes

minimize 1
2pT∇2

xxL(x(0), λ(0))p +∇f(x(0))Tp

d̊a A(x(0)) p ≥ −g(x(0)).

Insertion of numerical values gives

min 15
2 p2

1 − 5p1p2 + 9
2p2

2 + p1

d̊a p1 + p2 ≥ −2,
p2 ≥ −1,
p1 ≥ −4.

If we let p(0) denote the optimal solution of the QP subproblem, we obtain x(1) =
x(0) + p(0). We obtain λ(1) as the Lagrange multipliers of the QP subproblem.

(b) If no slack variables are added, the linear system of equations becomes(
∇2

xxL(x(0), λ(0)) A(x(0))T

Λ(0)A(x(0)) −G(x(0))

)(
∆x

−∆λ

)
= −

(
∇f(x(0))−A(x(0))Tλ(0)

G(x(0))λ(0) − µe

)
.

Insertion of numerical values gives

15 −5 1 0 1
−5 9 1 1 0

1 1 −2 0 0
0 2 0 −1 0
3 0 0 0 −4





∆x1

∆x2

−∆λ1

−∆λ2

−∆λ3


=



3
3

µ− 2
µ− 2
µ− 12


,

where the value of µ has not been specified. We may for example let µ = 1.
We obtain x(1) = x(0) + α∆x and λ(1) = λ(0) + α∆λ, where α is a nonnegative
steplength such that g(x(0) + α∆x) > 0 and λ(0) + α∆λ > 0.

4. (See the course material.)

5. (a) The first-order optimality conditions may be written as

2 1 0 0 1
1 2 0 0 1
0 0 1 2 0
0 0 2 1 0
1 1 0 0 0





x1

x2

x3

x4

−λ


=



1
2
3
3
2


.

The equations may be separated as one system for x1, x2, λ1, and one system
for x3, x4. The solution is

x∗ =
(

1
2

3
2 1 1

)T
, λ∗ =

3
2
.
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(b) To check whether x∗ is a minimizer, we need to know the definiteness of ZTHZ.
We may compute Z as

Z =


−1 0 0

1 0 0
0 1 0
0 0 1

 which gives ZTHZ =


2 0 0
0 1 2
0 2 1

 .

We see that ZTHZ is block diagonal with the second diagonal block indefinite.
With d = (0 1 − 1), we obtain dTZTHZd < 0, so that H is not positive
semidefinite. Hence, x∗ is not a local minimizer to (EQP ).

(c) Since x∗ is feasible to the added constraint, it follows that a solution to the
first-order optimality conditions is given by

x∗ =
(

1
2

3
2 1 1

)T
, λ∗ =

(
3
2 0

)T
.

(d) We may compute Z as

Z =


−1 0

1 0
0 1
0 1

 which gives ZTHZ =

(
2 0
0 6

)
.

We see that ZTHZ is diagonal and positive definite. Hence, x∗ is a global min-
imizer to (EQP ). Global optimality follows since for an equality-constrained
quadratic program, all local minimizers are global minimizers.


