

SF2822 Applied nonlinear optimization, final exam Thursday December 17 2009 8.00–13.00 Brief solutions

1. No constraints are active at the initial point. Hence, the working set is empty, i.e., $W = \emptyset$. Since H = I and c = 0, we obtain $p^{(0)} = -(Hx^{(0)} + c) = -x^{(0)}$. The maximum steplength is given by

$$\alpha_{\max} = \min_{i:a_i^T p^{(0)} < 0} \frac{a_i^T x^{(0)} - b_i}{-a_i^T p^{(0)}} = \frac{1}{5},$$

where the minimium is attained for i = 3. Consequently, $\alpha^{(0)} = 1/5$ so that

$$x^{(1)} = x^{(0)} + \alpha^{(0)} p^{(0)} = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} + \frac{1}{5} \begin{pmatrix} 0 \\ -1 \\ -2 \end{pmatrix} = \begin{pmatrix} 0 \\ \frac{4}{5} \\ \frac{8}{5} \end{pmatrix},$$

with $W = \{3\}$. The solution to the corresponding equality-constrained quadratic program is given by

$$\begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 2 \\ 1 & 1 & 2 & 0 \end{pmatrix} \begin{pmatrix} p_1^{(1)} \\ p_2^{(1)} \\ p_3^{(1)} \\ -\lambda_3^{(2)} \end{pmatrix} = - \begin{pmatrix} 0 \\ \frac{4}{5} \\ \frac{8}{5} \\ 0 \end{pmatrix}$$

One way of solving this system of linear equations is to first express $p^{(1)}$ in $\lambda_3^{(2)}$ from the first three equations as

$$p_1^{(1)} = \lambda_3^{(2)}, \quad p_2^{(1)} = -\frac{4}{5} + \lambda_3^{(2)}, \quad p_3^{(1)} = -\frac{8}{5} + 2\lambda_3^{(2)}.$$

Insertion into the last equation gives $\lambda_3^{(2)}=2/3,$ so that

$$p^{(1)} = \begin{pmatrix} \frac{2}{3} & -\frac{2}{15} & -\frac{4}{15} \end{pmatrix}^T$$
.

The maximum steplength is given by

$$\alpha_{\max} = \min_{i: a_i^T p^{(0)} < 0} \frac{a_i^T x^{(0)} - b_i}{-a_i^T p^{(0)}} = \infty,$$

as $Ap \ge 0$. Hence, $\alpha^{(1)} = 1$, so that

$$x^{(2)} = x^{(1)} + \alpha^{(1)}p^{(1)} = \begin{pmatrix} 0\\ \frac{4}{5}\\ \frac{8}{5} \end{pmatrix} + \begin{pmatrix} \frac{2}{3}\\ -\frac{2}{15}\\ -\frac{4}{15} \end{pmatrix} = \begin{pmatrix} \frac{2}{3}\\ \frac{2}{3}\\ \frac{4}{3} \end{pmatrix}.$$

Since $\lambda_3^{(2)} \geq 0$, it follows that $x^{(2)}$ is the optimal solution.

- 2. (a) Since $Ax^{(0)} > b$, there is no need to introduce s. We may let $s^{(0)} = Ax^{(0)} b = (1 \ 1 \ 1)^T$. Then, as Ax s = b is a linear equation, we will have $s^{(k)} = Ax^{(k)} b$ throughout. Consequently, $s^{(k)}$ is just a notation for $Ax^{(k)} b$ in this situation.
 - (b) The linear system of equations takes the form

$$\begin{pmatrix} H & -A^T \\ \operatorname{diag}(\lambda^{(0)})A & \operatorname{diag}(Ax^{(0)} - b) \end{pmatrix} \begin{pmatrix} \Delta x \\ \Delta \lambda \end{pmatrix} = -\begin{pmatrix} Hx^{(0)} + c - A^T\lambda^{(0)} \\ \operatorname{diag}(Ax^{(0)} - b) \operatorname{diag}(\lambda^{(0)})e - \mu^{(0)}e \end{pmatrix},$$

where e is the vector of ones. Insertion of numerical values gives

$$\begin{pmatrix} 1 & 0 & 0 & -2 & -1 & -1 \\ 0 & 1 & 0 & -1 & -2 & -1 \\ 0 & 0 & 1 & -1 & -1 & -2 \\ 2 & 1 & 1 & 1 & 0 & 0 \\ 2 & 4 & 2 & 0 & 1 & 0 \\ 3 & 3 & 6 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \Delta x_1 \\ \Delta x_2 \\ \Delta x_3 \\ \Delta \lambda_1 \\ \Delta \lambda_2 \\ \Delta \lambda_3 \end{pmatrix} = - \begin{pmatrix} -7 \\ -7 \\ 0 \\ 1 \\ 2 \end{pmatrix}.$$

- (c) The unit step is accepted only if $A(x^{(0)} + \Delta x) b > 0$ and $\lambda^{(0)} + \Delta \lambda > 0$. Since $A\Delta x \geq 0$, there is no restriction on the step for the x-variables, but since $\lambda_1^{(0)} + \Delta \lambda_1 \not> 0$, the unit step is not accepted for the λ -variables. We may for example let $\alpha^{(0)} = 0.99\alpha_{\rm max}$, where $\alpha_{\rm max}$ is the maximum step, i.e., $\alpha_{\rm max} = -\lambda_1^{(0)}/(\Delta \lambda_1)$. Then $x^{(1)} = x^{(0)} + \alpha^{(0)}\Delta x$ and $\lambda^{(1)} = \lambda^{(0)} + \alpha^{(0)}\Delta \lambda$.
- **3.** (See the course material.)
- **4.** (a) Since (NLP') is formed by perturbing the first constraint of (NLP) from $h(x) \ge 0$ to $h(x) \ge 1/2$, sensitivity analysis gives the estimate

$$f(\widetilde{x}) + \frac{1}{2}\widetilde{\lambda}_1 = f(\widetilde{x}) + 1 = 6.$$

(b) The QP-subproblem takes the form

minimize
$$\frac{1}{2}p^T \nabla^2_{xx} \mathcal{L}(x^{(0)}, \lambda^{(0)}) p + \nabla f(x^{(0)})^T p$$
subject to
$$\nabla g(x^{(0)}) \ p \ge -g(x^{(0)}).$$

We obtain

$$\begin{split} \nabla_{xx}^2 \mathcal{L}(x^{(0)}, \lambda^{(0)}) &= \nabla^2 f(x^{(0)}) - \lambda_1^{(0)} \nabla^2 h(x^{(0)}) \\ &= \begin{pmatrix} 4 & -2 \\ -2 & 2 \end{pmatrix} - 2 \begin{pmatrix} -1 & -1 \\ -1 & -1 \end{pmatrix} = \begin{pmatrix} 6 & 0 \\ 0 & 4 \end{pmatrix}. \end{split}$$

Insertion of numerical values gives

minimize
$$3p_1^2 + 2p_2^2 + 4p_1$$

subject to $2p_1 \ge \frac{1}{2}$,
 $p_1 \ge -5$,
 $p_2 \ge -4$.

This is a separable problem, so that minimization can be done with respect to p_1 and p_2 independently. We obtain $p_1 = 1/4$ and $p_2 = 0$ with Lagrange multipliers $\lambda_1 = 11/4$, $\lambda_2 = 0$ and $\lambda_3 = 0$. Consequently,

$$x^{(1)} = \begin{pmatrix} \frac{21}{4} \\ 4 \end{pmatrix}, \quad \lambda^{(1)} = \begin{pmatrix} \frac{11}{4} \\ 0 \\ 0 \end{pmatrix}.$$

- The second-order sufficient optimality conditions for (NLP_1) imply that
 - $q(x^*) \geq 0$,
 - $\nabla f(x^*) = A(x^*)^T \lambda^* \text{ for some } \lambda^* \ge 0,$ (ii)
 - (iii) $\lambda_{i}^{*}g_{i}(x^{*}) = 0, i = 1, ..., m, \text{ and }$
 - (iv) $Z_{+}(x^{*})^{T} \nabla_{xx}^{2} \mathcal{L}(x^{*}, \lambda^{*}) Z_{+}(x^{*}) \succ 0,$

where $A_{+}(x^{*})$ contains the rows of $A(x^{*})$ for which λ^{*} has positive components, and $Z_{+}(x^{*})$ is a matrix whose columns form a basis for null $(A_{+}(x^{*}))$.

We may write (NLP_2) as

$$(NLP_2)$$
 minimize $\widetilde{f}(z,x)$
subject to $\widetilde{g}(z,x) \ge 0$,

with

$$\widetilde{f}(z,x) = z, \quad \widetilde{g}(z,x) = \begin{pmatrix} z - f(x) \\ g(x) \end{pmatrix}.$$

Associated with (NLP_2) , we may define the Lagrangian function

$$\tilde{\mathcal{L}}(z, x, \mu, \eta) = z - \mu(z - f(x)) - \eta^T g(x),$$

where μ is the Lagrange multiplier associated with $z - f(x) \geq 0$ and η are the Lagrange multipliers associated with $g(x) \ge 0$.

We now want to find z^* , μ^* and η^* so that the second-order sufficient optimality conditions (i)-(iv) hold, but associated with (NLP₂). This means that we want to find z^* , μ^* and η^* such that

(i')
$$\left(\begin{array}{c} z^* - f(x^*) \\ g(x^*) \end{array} \right) \ge \left(\begin{array}{c} 0 \\ 0 \end{array} \right).$$

(i')
$$\begin{pmatrix} z^* - f(x^*) \\ g(x^*) \end{pmatrix} \ge \begin{pmatrix} 0 \\ 0 \end{pmatrix},$$
(ii')
$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -\nabla f(x^*) & A(x^*)^T \end{pmatrix} \begin{pmatrix} \mu^* \\ \eta^* \end{pmatrix}$$
 for some $\mu^* \ge 0$ and $\eta^* \ge 0$,
(iii')
$$\mu^*(z^* - f(x^*)) = 0 \quad r^* g(x^*) = 0 \quad i = 1 \quad m \text{ and }$$

(iii')
$$\mu^*(z^* - f(x^*)) = 0, \, \eta_i^* g_i(x^*) = 0, \, i = 1, \dots, m, \text{ and}$$

(iv')
$$\tilde{Z}_{+}(z^{*}, x^{*})^{T} \nabla^{2}_{z,x} \tilde{\mathcal{L}}(z^{*}, x^{*}, \mu^{*}, \eta^{*}) \tilde{Z}_{+}(z^{*}, x^{*}) \succeq 0,$$

where $\tilde{Z}_{+}(z^{*},x^{*})$ is a matrix whose columns form a basis for null($\tilde{A}_{+}(z^{*},x^{*})$), with $A_{+}(z^{*},x^{*})$ defined as the matrix comprising the rows of

$$\begin{pmatrix} 1 & -\nabla f(x^*)^T \\ 0 & A(x^*) \end{pmatrix}$$

for which the associated components of the multipliers μ^* and η^* of (ii') are positive.

We now verify these conditions. For (i') to hold, we must have $z^* \geq f(x^*)$, since $g(x^*) \geq 0$ holds by (i).

For (ii'), the first equation reads $1 = \mu^*$. Hence, $\mu^* = 1$ must hold. With $\mu^* = 1$, the second block of equations reads

$$0 = -\nabla f(x^*) + A(x^*)^T \eta^*,$$

which holds for $\eta^* = \lambda^*$ by (ii). Since $\mu^* = 1 > 0$ and $\lambda^* \ge 0$ by (ii), (ii') holds. Since $\mu^* > 0$, (iii') holds if $z^* = f(x^*)$, since (iii) implies that $\eta_i^* g_i(x^*) = 0$, $i = 1, \ldots, m$, if $\eta^* = \lambda^*$. In addition, since $z^* = f(x^*)$, (i') holds.

Finally, to verify (iv'), taking the derivatives gives

$$\nabla^2_{z,x} \tilde{\mathcal{L}}(z^*, x^*, \mu^*, \eta^*) = \begin{pmatrix} \nabla^2_{xx} \tilde{\mathcal{L}}(z^*, x^*, \mu^*, \eta^*) & \nabla^2_{xz} \tilde{\mathcal{L}}(z^*, x^*, \mu^*, \eta^*) \\ \nabla^2_{xx} \tilde{\mathcal{L}}(z^*, x^*, \mu^*, \eta^*) & \nabla^2_{zz} \tilde{\mathcal{L}}(z^*, x^*, \mu^*, \eta^*) \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & \nabla^2_{xx} \mathcal{L}(x^*, \lambda^*) \end{pmatrix}.$$

Since $\mu^* > 0$ and $\eta^* = \lambda^*$, we obtain

$$\tilde{A}_{+}(z^{*}, x^{*}) = \begin{pmatrix} 1 & -\nabla f(x^{*})^{T} \\ 0 & A_{+}(x^{*}) \end{pmatrix} = \begin{pmatrix} 1 & -\lambda_{+}^{*} T A_{+}(x^{*}) \\ 0 & A_{+}(x^{*}) \end{pmatrix}.$$

Note that $\operatorname{rank}(\tilde{A}_{+}(z^*, x^*)) = \operatorname{rank}(A_{+}(x^*)) + 1$, since the first row of $\tilde{A}_{+}(z^*, x^*)$ is not linearly dependent on the other rows. Hence, $\operatorname{null}(A_{+}(z^*, x^*))$ and $\operatorname{null}(A_{+}(x^*))$ have the same dimension. Since

$$\begin{pmatrix} 1 & -\lambda_+^{*T} A_+(x^*) \\ 0 & A_+(x^*) \end{pmatrix} \begin{pmatrix} 0 \\ Z_+(x^*) \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \text{ we may let } \tilde{Z}_+(z^*, x^*) = \begin{pmatrix} 0 \\ Z_+(x^*) \end{pmatrix}.$$

Then,

$$\tilde{Z}_{+}(z^{*}, x^{*})^{T} \nabla_{z, x}^{2} \tilde{\mathcal{L}}(z^{*}, x^{*}, \mu^{*}, \eta^{*}) \tilde{Z}_{+}(z^{*}, x^{*})$$

$$= \begin{pmatrix} 0 & Z_{+}(x^{*})^{T} \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & \nabla_{xx}^{2} \mathcal{L}(x^{*}, \lambda^{*}) \end{pmatrix} \begin{pmatrix} 0 \\ Z_{+}(x^{*}) \end{pmatrix}$$

$$= Z_{+}(x^{*})^{T} \nabla_{xx}^{2} \mathcal{L}(x^{*}, \lambda^{*}) Z_{+}(x^{*}) \succ 0,$$

as required, where (iv) has been used in the last step. This means that the second-order sufficient optimality conditions hold for (NLP_2) with $z^* = f(x^*)$, $\mu^* = 1$ and $\eta^* = \lambda^*$.