
SF2822 Applied nonlinear optimization, final exam
Thursday December 17 2009 8.00–13.00

Brief solutions

1. No constraints are active at the initial point. Hence, the working set is empty, i.e.,
W = ∅. Since H = I and c = 0, we obtain p(0) = −(Hx(0) + c) = −x(0). The
maximum steplength is given by
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where the minimium is attained for i = 3. Consequently, α(0) = 1/5 so that
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with W = {3}. The solution to the corresponding equality-constrained quadratic
progam is given by

1 0 0 1
0 1 0 1
0 0 1 2
1 1 2 0
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One way of solving this system of linear equations is to first express p(1) in λ

(2)
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the first three equations as
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Insertion into the last equation gives λ
(2)
3 = 2/3, so that
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The maximum steplength is given by
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as Ap ≥ 0. Hence, α(1) = 1, so that

x(2) = x(1) + α(1)p(1) =
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Since λ
(2)
3 ≥ 0, it follows that x(2) is the optimal solution.
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2. (a) Since Ax0) > b, there is no need to introduce s. We may let s(0) = Ax0) − b =
(1 1 1)T . Then, as Ax− s = b is a linear equation, we will have s(k) = Ax(k)− b
throughout. Consequently, s(k) is just a notation for Ax(k)− b in this situation.

(b) The linear system of equations takes the form(
H −AT

diag(λ(0))A diag(Ax(0) − b)

)(
∆x

∆λ

)
= −

(
Hx(0) + c−ATλ(0)

diag(Ax(0) − b) diag(λ(0))e− µ(0)e

)
,

where e is the vector of ones. Insertion of numerical values gives

1 0 0 −2 −1 −1
0 1 0 −1 −2 −1
0 0 1 −1 −1 −2
2 1 1 1 0 0
2 4 2 0 1 0
3 3 6 0 0 1


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(c) The unit step is accepted only if A(x(0) + ∆x) − b > 0 and λ(0) + ∆λ > 0.
Since A∆x ≥ 0, there is no restriction on the step for the x-variables, but
since λ

(0)
1 + ∆λ1 6> 0, the unit step is not accepted for the λ-variables. We

may for example let α(0) = 0.99αmax, where αmax is the maximum step, i.e.,
αmax = −λ

(0)
1 /(∆λ1). Then x(1) = x(0) + α(0)∆x and λ(1) = λ(0) + α(0)∆λ.

3. (See the course material.)

4. (a) Since (NLP ′) is formed by perturbing the first constraint of (NLP ) from h(x) ≥
0 to h(x) ≥ 1/2, sensitivity analysis gives the estimate

f(x̃) +
1
2
λ̃1 = f(x̃) + 1 = 6.

(b) The QP-subproblem takes the form

minimize 1
2pT∇2

xxL(x(0), λ(0))p +∇f(x(0))Tp

subject to ∇g(x(0)) p ≥ −g(x(0)).

We obtain

∇2
xxL(x(0), λ(0)) = ∇2f(x(0))− λ
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1 ∇2h(x(0))

=
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−2 2

)
− 2

(
−1 −1
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)
=

(
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)
.

Insertion of numerical values gives

minimize 3p2
1 + 2p2

2 + 4p1

subject to 2p1 ≥ 1
2 ,

p1 ≥ −5,
p2 ≥ −4.
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This is a separable problem, so that minimization can be done with respect
to p1 and p2 independently. We obtain p1 = 1/4 and p2 = 0 with Lagrange
multipliers λ1 = 11/4, λ2 = 0 and λ3 = 0. Consequently,

x(1) =

(
21
4

4

)
, λ(1) =


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0

 .

5. The second-order sufficient optimality conditions for (NLP1) imply that
(i) g(x∗) ≥ 0,
(ii) ∇f(x∗) = A(x∗)T λ∗ for some λ∗ ≥ 0,
(iii) λ∗i gi(x∗) = 0, i = 1, . . . ,m, and
(iv) Z+(x∗)T∇2

xxL(x∗, λ∗)Z+(x∗) � 0,
where A+(x∗) contains the rows of A(x∗) for which λ∗ has positive components, and
Z+(x∗) is a matrix whose columns form a basis for null(A+(x∗)).
We may write (NLP2) as

(NLP2)
minimize f̃(z, x)

subject to g̃(z, x) ≥ 0,

with

f̃(z, x) = z, g̃(z, x) =

(
z − f(x)

g(x)

)
.

Associated with (NLP2), we may define the Lagrangian function

L̃(z, x, µ, η) = z − µ(z − f(x))− ηTg(x),

where µ is the Lagrange multiplier associated with z − f(x) ≥ 0 and η are the
Lagrange multipliers associated with g(x) ≥ 0.

We now want to find z∗, µ∗ and η∗ so that the second-order sufficient optimality
conditions (i)–(iv) hold, but associated with (NLP2). This means that we want to
find z∗, µ∗ and η∗ such that

(i’)

(
z∗ − f(x∗)

g(x∗)

)
≥
(

0
0

)
,

(ii’)

(
1
0

)
=

(
1 0

−∇f(x∗) A(x∗)T

)(
µ∗

η∗

)
for some µ∗ ≥ 0 and η∗ ≥ 0,

(iii’) µ∗(z∗ − f(x∗)) = 0, η∗i gi(x∗) = 0, i = 1, . . . ,m, and
(iv’) Z̃+(z∗, x∗)T∇2

z,xL̃(z∗, x∗, µ∗, η∗)Z̃+(z∗, x∗) � 0,
where Z̃+(z∗, x∗) is a matrix whose columns form a basis for null(Ã+(z∗, x∗)), with
Ã+(z∗, x∗) defined as the matrix comprising the rows of(

1 −∇f(x∗)T

0 A(x∗)

)

for which the associated components of the multipliers µ∗ and η∗ of (ii’) are positive.
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We now verify these conditions. For (i’) to hold, we must have z∗ ≥ f(x∗), since
g(x∗) ≥ 0 holds by (i).

For (ii’), the first equation reads 1 = µ∗. Hence, µ∗ = 1 must hold. With µ∗ = 1,
the second block of equations reads

0 = −∇f(x∗) + A(x∗)Tη∗,

which holds for η∗ = λ∗ by (ii). Since µ∗ = 1 > 0 and λ∗ ≥ 0 by (ii), (ii’) holds.

Since µ∗ > 0, (iii’) holds if z∗ = f(x∗), since (iii) implies that η∗i gi(x∗) = 0, i =
1, . . . ,m, if η∗ = λ∗. In addition, since z∗ = f(x∗), (i’) holds.

Finally, to verify (iv’), taking the derivatives gives

∇2
z,xL̃(z∗, x∗, µ∗, η∗) =

(
∇2

xxL̃(z∗, x∗, µ∗, η∗) ∇2
xzL̃(z∗, x∗, µ∗, η∗)

∇2
zxL̃(z∗, x∗, µ∗, η∗) ∇2

zzL̃(z∗, x∗, µ∗, η∗)

)
=

(
0 0
0 ∇2

xxL(x∗, λ∗)

)
.

Since µ∗ > 0 and η∗ = λ∗, we obtain

Ã+(z∗, x∗) =

(
1 −∇f(x∗)T

0 A+(x∗)

)
=

(
1 −λ∗+T A+(x∗)
0 A+(x∗)

)
.

Note that rank(Ã+(z∗, x∗)) = rank(A+(x∗)) + 1, since the first row of Ã+(z∗, x∗)) is
not linearly dependent on the other rows. Hence, null(A+(z∗, x∗)) and null(A+(x∗))
have the same dimension. Since(

1 −λ∗+T A+(x∗)
0 A+(x∗)

)(
0

Z+(x∗)

)
=

(
0
0

)
, we may let Z̃+(z∗, x∗) =

(
0

Z+(x∗)

)
.

Then,

Z̃+(z∗, x∗)T∇2
z,xL̃(z∗, x∗, µ∗, η∗)Z̃+(z∗, x∗)

=
(

0 Z+(x∗)T
)( 0 0

0 ∇2
xxL(x∗, λ∗)

)(
0

Z+(x∗)

)
= Z+(x∗)T∇2

xxL(x∗, λ∗)Z+(x∗) � 0,

as required, where (iv) has been used in the last step. This means that the second-
order sufficient optimality conditions hold for (NLP2) with z∗ = f(x∗), µ∗ = 1 and
η∗ = λ∗.


