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Brief solutions

1. (a) We have

∇f(x) =


2e(x1−1) + 2x1 − 2x2

2x2 − 2x1

4x3

 and in particular ∇f(x∗) =


2

0

4

 .
Since ∇f(x∗) 6= 0, the point x∗ does not satisfy the first-order optimality con-
ditions for an unconstrained problem. Hence, at least one constraint must be
active. The point x∗ is feasible, and the only potentially active constraint is
constraint 2 for c = 3. Since

∇g2(x) =
(

1 0 2
)T

,

it follows that for c = 3, the first-order necessary optimality conditions require
a λ2 ≥ 0 such that

2

0

4

 =


1

0

2

λ2,
which holds for λ2 = 2. Hence, for c = 3, it holds that x∗ satisfies the first-order
necessary optimality conditions.

(b) The objective function is convex, and the only active constraint is linear. Hence,
x∗ is a global minimizer to

(NLP ′)
minimize 2e(x1−1) + (x2 − x1)2 + 2x23

subject to x1 + x3 ≥ 3.

But since x∗ is feasible to (NLP ) as well, and the only difference between
(NLP ) and (NLP ′) is that we have omitted the constraints that are not active
at x∗, it follows that x∗ is globally optimal to (NLP ) as well.

2. (a) The iterates are illustrated in the figure below:

At the first iteration constraint 3 is in the working set. The direction points
at (5 3)T , which is infeasible. The maximum step gives the new point (5 5

2)T .
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Constraint 5 is added, which gives a vertex and hence a zero step. Constraint
3 has a negative multiplier, and it is hence deleted. The direction points at
(30576

60
19)T , which is feasible. Hence, the step there is taken. At this point,

constraint 5 has a negative multiplier, and it is hence deleted. The direction
points at (3 2) which is feasible. Hence, the step there is taken. No constraints
are active, and we have found the optimal solution.

(b) The iterates are illustrated in the figure below:

At the first iteration constraint 2 is in the working set. The direction points
at (2 0)T , which is feasible. Hence, the step there is taken. Constraint 2 has a
negative multiplier, and it is hence deleted. The direction points at (3 2) which
is feasible. Hence, the step there is taken. No constraints are active, and we
have found the optimal solution.

3. We have

∇2
xxL(x(0), λ(0)) =

(
2 0

0 2

)
.

(a) The QP subproblem becomes

minimize 1
2p
T∇2

xxL(x(0), λ(0))p+∇f(x(0))Tp

subject to ∇g1(x(0))Tp = −g1(x(0)),
∇g2(x(0))Tp ≥ −g2(x(0)),
∇g3(x(0))Tp ≥ −g3(x(0)).

Insertion of numerical values gives

minimize p21 + p22 − p1 − 3p2

subject to −p1 + p2 = 0,
p2 ≥ −2,
−p1 ≥ −4.

The first constraint gives p1 = p2, so that we obtain

minimize 2p21 − 4p1

subject to p1 ≥ −2,
−p1 ≥ −4.
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The optimal solution is given by p1 = p2 = 1, and the Lagrange multiplier
vector is given by λ1 = −1, λ2 = 0, λ3 = 0.

Hence, we obtain x(1) = x(0) + p = (1 1)T and λ(1) = λ = (−1 0 0)T .

(b) The change in the quadratic programming subproblem is that the constraint
−p1 + p2 = 0 is replaced by −p1 + p2 ≥ 0, i.e.,

minimize p21 + p22 − p1 − 3p2

subject to −p1 + p2 ≥ 0,
p2 ≥ −2,
−p1 ≥ −4.

In the solution computed, it holds that λ1 < 0. Hence, the solution does not
remain optimal to the new problem. By temporarily ignoring the constraint
−p1+p2 ≥ 0, we obtain p1 = 1/2, p2 = 3/2, which is feasible and hence optimal.

Thus, in this situation we obtain x(1) = x(0) + p = (1/2 3/2)T and λ(1) = λ =
(0 0 0)T .

(c) If the constraint is linear, the linearization of the constraint is exact, i.e.,

g1(x
(1)) = g1(x

(0)) +∇g1(x(1))Tp(0).

Since the constraints in the subproblem are given by the linearization, they will
be satisfied in both cases.

4. (See the course material.)

5. (a) Let fµ(x) denote the objective function of (DQPµ), i.e.,

fµ(x) =
1

2
xTHx+ cTx+

1

µ

n∑
i=1

xi(1− xi).

Then we obtain

∇fµ(x) = Hx+ c+
1

µ
e− 2

µ
x, ∇2fµ(x) = H − 2

µ
I,

where e is the vector of ones and I is the identity matrix.

We obtain

λmin(∇2fµ(x)) = λmin(H)− 2

µ
,

since adding a multiple of the identity matrix just shifts the eigenvalues. Hence,
λmin(∇2fµ(x)) < 0 if

µ <
2

λmin(H)
.

Hence, let µ̄ = 2/λmin(H), where we let µ̄ =∞ if λmin(H) = 0.

(b) For the one-dimensional problem, we obtain

f ′µ(x) = Hx+ c+
1

µ
− 2

µ
x,

so that

f ′µ(0) = c+
1

µ
, f ′µ(1) = H + c− 1

µ
,
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Hence, f ′µ(0) > 0 if

µ <
1

max{−c, 0}
and f ′µ(1) < 0 if

µ <
1

max{H + c, 0}
.

Here, division by zero should be interpreted as infinity. Hence, by letting

µ̂ = min

{
1

max{−c, 0}
,

1

max{H + c, 0}

}
we obtain f ′µ(0) > 0 and f ′µ(1) < 0 for 0 < µ < µ̂. This means that x = 0 and
x = 1 are both local minimizers to (DQPµ). If, in addition, µ < µ̄, these are
the only two local minimizers. The global minimizer is found by comparing the
objective values of fµ(0) and fµ(1).

(c) The one-dimensional problem has two local minimizers for µ sufficiently small.
One may expect that the n-dimensional problem has 2n local minimizers for
µ sufficiently small. Small values of µ also create high degree of nonconvexity.
Hence, finding the global minimizer of such a problem is probably not a viable
approach.

(d) If H is diagonal, the problem decomposes into n separate one-dimensional prob-
lems

(DQP i)
minimize
xi∈IR

1
2Hiix

2
i + cixi

subject to xi ∈ {0, 1}.

Such a problem can easily be solved, as we have only two feasible points.

If Hii/2 + ci < 0, then x∗i = 1, otherwise x∗i = 0. Repeating this argument for
i = 1, . . . , n gives the optimal solution x∗.


