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1.  (a) The first-order necessary optimality conditions for (QP) are given by Hx +c¢ =
0. As H is nonsingular, there is a unique solution given by ! = (1 1 1)7.

The matrix H is not positive semidefinite, since the leading two-by-two prin-
cipal submatrix is indefinite. With d = (1 — 1 0)T, we obtain d’Hd = —4.
Consequently, 2! does not satisfy the second-order necessary optimality condi-
tions to (QP).

Therefore, there is no point that satisfies the second-order necessary optimality
conditions for (QP).

(b) The first-order necessary optimality conditions for (EQP) are given by

() (5)-(5)

which has unique solution 22 = (4 0 1)7, A2 = 8. We may for example form a
matrix Z whose columns form a basis for null(A) as

1 0
Z=10 0],
01

for which ZTHZ = I. Hence, x? satisfies the second-order necessary optimality
conditions fo (EQP).

(c) Since A has only one row, a local minimizer to (/QP) has to be a local minimizer
to (QP) or a local minimizer to (EQP). Since 2! does not satisfy the second-
order necessary optimality conditions to (QP), it is not a local mininimizer
to (QP). Hence, it is not a local minimizer to (IQP). Since x? satisfies the
second-order sufficient optimality conditions to (EQP), it is a local minimizer
to (EQP). In addition, since A\? > 0, it is also a local minimizer to (IQP).

(d) Let g(z) = 12THx +cTz. With d given as in (1a), it follows that ¢(z! +ad) and
q(z' — ad) tend to minus infinity as & — co. Since we have only one constraint,
at least one of x! + ad and ! — ad must remain feasible in (IQP) as o — oo.
We conclude that no global minimizer can exist.

2. The QP subproblem becomes

minimize %pTV?mﬁ(x(U), A(U))p + Vf(x(o))Tp
subject to Vgi($(0))Tp > 7gi($(0))’ i=1,2,3.

Insertion of numerical values gives

min %p% + %p%
subject to p; > 1,
D2 Z 27
p1+p2 > 2.

If we let p(® denote the optimal solution of the QP subproblem, we obtain z(!) =
2 + pO We obtain A(}) as the Lagrange multipliers of the QP subproblem.
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4.

The quadratic program is convex, and it follows by inspection that the optimal
solution is given by p(®) = (1 2)T. The corresponding Lagrange multipliers are given
by A1) = (12 0)”. Then, p©@ and AV satisfy the first-order necessary optimality
conditions for the QP-subproblem, which by convexity gives a global minimizer.
Therefore the next SQP iterate is given by z(1) = 20 4+ p(® = (1 2)T and AV =
(120)7.

(See the course material.)

(a) The problem (QP) is a convex quadratic program. The primal part of the
trajectory is obtained as minimizer to the barrier-transformed problem

(Py) min 123+ 123 — pln(z; + 22 — a)
under the implicit condition that x1 + 22 — a > 0. The first-order optimality

conditions of (P,) gives

21 (1) - L
w1(p) + w2(p) —a
I

r1(p) + 22(p) — a

These equations are symmetric in 21 (u) and x2(p). Hence, x1(u) = x2(p). This
mean that 271 (u)? — azy(u) — p = 0, from which it follows that

=0,

T2 (1) — =0.

a a2 u
x1(p) = 2 (p) = 1V Ty

The plus sign has been chosen in the square root to ensure x1 () +x2(n) —a > 0.

The dual part of the trajectory, i.e. A(u), is normally given by \; (1) = p/gi(x(p)),
i=1,...,m. Here we only have one constraint, so

p / LH
Ap) = 5
Ty

2(Z+,/§§+g>a 2+2\/16+§

(b) We consider three cases: (i) a > 0, (ii), a = 0 and (iii) a > 0.

e a > 0. In this case

z1(p) = z2(p) = —+\/E+—

As pu—0it follows that z(u) — (a/2 a/2)" and A(u) — a/2
The point z* = (a/2 a/2)T together with X* = a/2 satlsﬁes the first-order
optimality conditions of (QP) and is therefore a global minimizer, since
(QP) is a convex problem.

e a = 0. In this case

z1(p) = z2(p) = A(p) = \/g

As p — 0 it follows that z(u) — (0 0)T and A(p) — 0

The point #* = (0 0)7 together with \* = 0 satisfies the first-order opti-
mality conditions of (QP) and is therefore a global minimizer, since (QP)
is a convex problem.
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5.

(a)

e a < 0. In this case

a a2 u a a
zip) =220) =AW = 3+ t5=77 1

As p — 0 it follows that x(u) — (0 0)7 and A(u) — 0

The point 2 = (0 0)7 together with A = 0 satisfies the first-order opti-
mality conditions of (QP) and is therefore a global minimizer, since (QP)
is a convex problem.

The relaxed problem is a non-convex quadratic programming problem. To ob-
tain a lower bound of the original problem we do need to calculate a global
minimizer of this non-convex relaxed problem, which in general is not compu-
tationally tractable.

If we let (SDP’) be the problem arising as the constraint Y = xa? is added
to (SDP) we can replace Y with zz”, which by (i) gives trace(HY) = 2THz.
In addition, if Y = za”, then Yij = x2, so that the constraint Yjj = j is

] )
equivalent to x? = ;. Consequently, (SDP’) may be written as

min clr + %xTHx
T
0 0
(SDP") subject to xxT “ = ,
T 1 0 0
x?:xj, j=1...,n.

By hint (ii) we can see that the constraint

vl 00
=
o’ 1 0 0
is always fulfilled. It follows that (SDP’) may be written as

min ¢z + %xTH T

2 _ ... :
Tj = xj, j=1,...,n.

(SDP')

But z% = x; if and only if z; € {0,1}. Hence, (SDP') and (P) are equivalent.



