
CHAPTER 2

Invariant and controlled invariant subspaces

In this chapter we introduce two important concepts: invariant subspace
and controlled invariant subspace, which will be used later on to solve many
control problems.

2.1. Invariant subspaces

Consider an n-dimensional linear system

(2.1) ẋ = Ax

where x ∈ Rn.

Definition 2.1. A set Ω ⊆ Rn is called an invariant set of (2.1) if for
any initial condition x0 ∈ Ω, we have x(x0, t) = eAtx0 ∈ Ω, ∀t ≥ 0.

Some trivial examples of invariant sets are Rn and x = {0}.
In this course we only consider a special class of invariant sets: invariant

subspaces. Now let us discuss conditions for a subspace S to be invariant.
Since by Taylor expansion we have

x(x0, t) = x0 + tAx0 +
t2

2
A2x0 + · · · ,

it is obvious that if Aix0 ∈ S ∀i ≥ 0, then x(x0, t) ∈ S, ∀t ≥ 0. Naturally
this argument is true only if S is a linear subspace. It is easy to see as a
sufficient condition

(2.2) Az ∈ S ∀z ∈ S.
In other words, this condition implies that if we define a mapping from

Rn to Rn: w = Az, then the image of S ⊆ Rn is contained in S. We denote
this by

(2.3) AS ⊆ S.
Now we show this condition is also necessary for S to be invariant.

Proposition 2.1. A necessary and sufficient condition for a linear sub-
space S to be invariant under (2.1) is that condition (2.3) holds.

Proof

We only show the necessity here. Suppose there exists a point x0 ∈ S such
that Ax0 /∈ S. Then when t is sufficiently small, we have

x(x0, t) = x0 + tAx0 + O(t2),

9
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which does not belong to S, since S is closed.

Example 2.1. Consider
˙[x1

x2

]
=
[−2 −1

1 0

] [
x1

x2

]
.

Show that S = span{
[−1

1

]
} is invariant.

We first use the definition of invariant set to show this. It is easy to
see that the set can be redefined as S = {x ∈ R2 : x1 + x2 = 0}. Then to
show S to be invariant is to show x1(x0, t) + x2(x0, t) = 0 ∀t ≥ 0 if x0 ∈ S.
This is equivalent to showing ẋ1 + ẋ2 = 0 for all (x1, x2)T ∈ S. We have
ẋ1 + ẋ2 = −2x2 − x2 + x1 = −(x1 + x2) = 0 if (x1, x2)T ∈ S.

We can also show this with Proposition 2.1, since A
[−1

1

]
= −

[−1
1

]
.

Remark 2.1. As an example to show the above result is only true for
subspaces, we consider a circle defined by R = {(x1, x2) : x2

1 + x2
2 = 1}. It is

easy to show (as an exercise) that this set is invariant under the system

ẋ1 = ωx2

ẋ2 = −ωx1,

where ω is any positive number.
We ask the reader to check if Az ⊂ R for any z ∈ R.

Then we can use condition (2.3) as an alternative definition for invariant
subspace.

Definition 2.2. A linear subspace S is A-invariant (invariant under
ẋ = Ax) iff AS ⊆ S.

2.2. Controlled invariant subspaces

Now we consider a control system

(2.4) ẋ = Ax+Bu

where x ∈ Rn and u ∈ Rm.

Definition 2.3. S is called a controlled invariant subspace of (2.4) if
there exists a feedback control u = Fx such that S is an invariant subspace
of

ẋ = (A+BF )x.

Similar to invariant subspace, we can also give another equivalent defi-
nition.

Definition 2.4. S is an (A,B)-invariant (controlled invariant) sub-
space if there exists a matrix F such that

(2.5) (A+BF )S ⊆ S.
Such an F is called a friend of S.
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We denote the set of friends by F(S). The following theorem provides
a fundamental characterization of (A,B)-invariant subspaces that removes
the explicit involvement of the feedback matrix F .

Theorem 2.2. S is (A,B)-invariant if and only if

(2.6) AS ⊆ S + Im B.

Proof

Necessity: Suppose F is a friend, then

(A+BF )S ⊆ S.
or

AS ⊆ S −B(FS).

Since B(FS) ⊆ Im B, thus (2.6) holds.
Sufficiency: The proof is constructive and is given as follows.

We now give an algorithm for finding a friend of V, which also serves as
a proof of the sufficiency of Theorem 2.2.

Algorithm for finding F
Let {v1, v2, . . . , vr} be a basis for V. Since V satisfies AV ⊆ V + Im B,

there is for each i = 1, . . . , r a wi ∈ V and a ui ∈ Rm such that

Avi = wi +Bui.

Let F be a m × n-matrix such that Fvi = −ui for i = 1, 2, . . . , r (if r < n
then F is not unique). Then Avi = wi − BFvi, i.e., (A + BF )vi = wi ∈ V
and therefore (A+BF )V ⊆ V.

Example 2.2. Let A =
[
0 1
2 1

]
and B =

[
0
1

]
. Is the subspace V = {x ∈

R2 : x1 = x2} (A,B)-invariant? If so, find a friend of V.

Clearly, V is spanned by v =
[
1 1

]′. Since

Av =
[
0 1
2 1

] [
1
1

]
=
[
1
3

]
=
[
1
1

]
+ 2

[
0
1

]
∈ V + Im B,

V is (A,B)-invariant, and we can let u = 2. To find F we must solve the
under-determined system of equations Fv = −u, i.e.,

[
f1 f2

] [1
1

]
= −2.

The set F(V) is the affine space {(λ − 2,−λ);λ ∈ R}. Choose, e.g., F =[−2 0
]
.

Is the subspace V := {x ∈ R2 : x1 = 0} (A,B)-invariant?
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2.3. Reachability subspaces

In the rest of this chapter, we study the most elementary class of con-
trolled invariant subspaces: reachability (controllability) subspace.

Definition 2.5. We use the notation 〈A|S〉 to denote the minimal A-
invariant subspace that contains subspace S.

Naturally if S is already A-invariant, then 〈A|S〉 = S. 〈A|S〉 can be
computed in the following way:

(1) Let S0 = S, check if AS0 ⊆ S0. If yes, stop. Otherwise,
(2) Let Sk+1 = ASk + Sk, k ≥ 0.
(3) Check if ASk+1 ⊆ Sk+1. If yes, stop. Otherwise return to step 2.

Consider again (2.4). Recall that the reachable (controllable) subspace
of (2.4) can be defined with our notation as

〈A| Im B〉 = span{B,AB, · · · , An−1B},
namely, the minimal A-invariant subspace that contains Im B. However, for
many complex control problems, such as the problem of controllability under
constraints discussed in the introduction, more refined study of reachability
is needed.

Now consider the feedback law

(2.7) u = Fx+Gv.

The corresponding closed-loop system

ẋ = (A+BF )x+BGv

has the reachable subspace

(2.8) R = 〈A+BF | Im BG〉.
Remark 2.2. By construction, R is (A,B)-invariant.

Definition 2.6. A subspace R is called a reachability subspace of (2.4)
if there are F and G such that (2.8) holds.

Example 2.3. If G = I then

R = 〈A+BF | Im B〉 = 〈A| Im B〉,
is the reachable subspace. If G = 0 then R = 0. For a SISO-system it is
obvious that these are the only possible reachability subspaces.

We now proceed with the analysis of reachability subspaces. The first
theorem shows that the matrix G can be removed from the characterization
of R at the price of an implicit characterization, which however is of great
use.

Theorem 2.3. A subspace R is a reachability subspace if and only if
there is an F such that

(2.9) R = 〈A+BF | Im B ∩R〉.
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Proof

Necessity: Suppose R is a reachability subspace, i.e.,

(2.10) R = 〈A+BF | Im BG〉
for some F and G. Then Im BG ⊆ R and Im BG ⊆ Im B, i.e.,

Im BG ⊆ Im B ∩R.
Hence,

(2.11) R ⊆ 〈A+BF | Im B ∩R〉.
But R is (A,B)-invariant and therefore

(A+BF )kR ⊆ R for k ≥ 1

and

(2.12) 〈A+BF | Im B ∩R〉 ⊆ R.
Now (2.9) follows from (2.11) and (2.12).

Sufficiency: Suppose that (2.9) holds. It is enough to show that there is a G
such that Im B ∩R = Im BG, since this will imply (2.10).

Let p1, p2, . . . , pq be a basis for Im B ∩R. Then there is a linearly inde-
pendent set {u1, u2, . . . , uq} such that

pi = Bui i = 1, 2, . . . , q,

since if the ui’s were linearly dependent then the pi’s would be linearly depen-
dent as well. If we let the input space be Rm it holds that q ≤ dim(Im B) ≤
m. Choose uq+1, . . . , um such that {u1, . . . , um} is a basis for Rm. We want

BGui =
{
pi i = 1, 2, . . . , q,
0 i = q + 1, . . . ,m

which yields Im BG = Im B ∩R, i.e.,

BG[u1, . . . , um] = [p1, . . . , pq, 0, . . . , 0] = B[u1, . . . , uq, 0, . . . , 0].

This is achieved by

G := [u1, . . . , uq, 0, . . . , 0][u1, u2, . . . , um]−1.

We know that the reachability subspace R is (A,B)-invariant and it is
obvious that F in

(2.13) R = 〈A+BF | Im B ∩R〉
is a friend of R, i.e., F ∈ F(R).

Example 2.4. Consider
ẋ1 = x1 + x2

ẋ2 = u1

ẋ3 = x1 + u2.

We will show that V = span{e1, e2} is a reachability subspace.
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It is easy to compute that F =
(

0 0 0
−1 0 0

)
is a friend of V , and

ImB∩V = span{e2}. Then, it is easy to calculate that (A + BF )e2 = e1
and (A + BF )e1 = e1. Thus < A + BF |ImB ∩ V >= V . We note that
V1 = span{e1} is an (A,B)-invariant subspace but not a reachability sub-
space since ImB ∩ V1 = 0.

The next theorem shows that the representation (2.13) is independent
of the actual choice of F ∈ F(R).

Theorem 2.4. Let R be a reachability subspace and let F̂ ∈ F(R), i.e.
an arbitrary friend of R. Then

R = 〈A+BF̂ | Im B ∩R〉.
Proof

From Theorem 2.3 follows the existence of an F such that

R = 〈A+BF | Im B ∩R〉.
Now let F̂ ∈ F(R) be an arbitrary friend and form

R̂ = 〈A+BF̂ | Im B ∩R〉.
Since (A+BF̂ )R ⊆ R, it holds that R̂ ⊆ R.

We shall show that R ⊆ R̂ by induction. Clearly Im B∩R ⊆ R̂. Assume
that

(A+BF )k(Im B ∩R) ⊆ R̂.
Then

(A+BF )k+1(Im B ∩R) ⊆ (A+BF )R̂
⊆ (A+BF̂ )R̂ +B(F − F̂ )R̂
⊆ R̂ if B(F − F̂ )R̂ ⊆ R̂

If we can show the last inclusion, then it follows by induction that R ⊆ R̂.
We need to introduce a lemma here in order to carry on the proof.

Lemma 2.5. Let F1 ∈ F(V). Then F2 ∈ F(V) if and only if B(F1 −
F2)V ⊆ V.

Proof (Proof of the lemma)
(only if) Suppose F1, F2 ∈ F(V). Then for all v ∈ V it holds that (A +
BF1)v ∈ V and (A+BF2)v ∈ V, which implies that B(F1 − F2)v ∈ V.
(if) Let v ∈ V. Then (A + BF1)v + B(F2 − F1)v = (A + BF2)v ∈ V, since
the terms on the left hand side are in V.

Now we return to the proof of the theorem. Since R̂ ⊆ R it holds that

B(F − F̂ )R̂ ⊆ B(F − F̂ )R ⊆ {Lemma 2.5} ⊆ R.
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But B(F − F̂ )R̂ ⊆ Im B and therefore

B(F − F̂ )R̂ ⊆ Im B ∩R ⊆ R̂.

Combining Theorem 2.3 and Theorem 2.4 we obtain the following re-
sult, which can be used to test whether a given subspace is a reachability
subspace.

Corollary 2.6. Suppose V is (A,B)-invariant and let F ∈ F(V) be an
arbitrary friend of V. The necessary and sufficient condition for V to be a
reachability subspace is that

〈A+BF | Im B ∩ V〉 = V.
.

2.4. Maximal reachability subspaces

Consider the class S(Z) of (A,B)-invariant subspaces contained in Z,
and in particular reachability subspaces R such that R ∈ S(Z). All these
satisfy

(2.14) R ⊆ S∗(Z),

where S∗(Z) is the maximal (A,B)-invariant subspace in Z. The existence
of S∗ is shown as follows.

Lemma 2.7. Let Z be a subspace of Rn. Then, the class S(Z) of all
(A,B)-invariant subspaces S ⊆ Z has a maximal element S∗(Z) in the
sense that

S ⊆ S∗(Z) for all S ∈ S(Z).

Proof

Note first that the set S(Z) is closed under addition, i.e., if S1,S2 ∈ S(Z),
then S1 + S2 ⊆ Z and

A(S1 + S2) = AS1 +AS2 ⊆ S1 + S2 + Im B.

Hence, S1 + S2 ∈ S(Z).
Since Z is of finite dimension, there is an element S∗ ∈ S(Z) of largest

dimension. If S ∈ S(Z), then S + S∗ ∈ S(Z) and S∗ ⊆ S + S∗. However,
S∗ has maximal dimension and therefore, dim(S + S∗) = dimS∗, and then,
S∗ = S + S∗, that is, S ⊆ S∗. Thus, S∗ is maximal in terms of subspace
inclusion.

Is there also a maximal R that satisfies (2.14)? Maximal in the sense
that it contains all other such reachability subspaces.

Theorem 2.8. Let S∗ be the maximal (A,B)-invariant subspace in Z,
and let F ∈ F(S∗). Then the maximal reachability subspace in Z is

(2.15) R∗ := 〈A+BF | Im B ∩ S∗〉.
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Moreover, F ∈ F(R∗), i.e.,

F(R∗) ⊇ F(S∗).

We develop the proof with the help of the following two lemmas. The first
of them is a refinement of Theorem 2.4, where we learn that a reachability
subspace can in fact be characterized by any friend of the smaller class
of friends of an (A,B)-invariant subspace which generates the reachability
subspace in a specific way.

Lemma 2.9. Let S be (A,B)-invariant and let

R := 〈A+BF | B̂〉,
where F ∈ F(S) and B̂ = Im B ∩ S. If F̂ is any matrix such that B(F̂ −
F )S ⊂ S then we also have that R = 〈A+BF̂ | B̂〉.

Remark 2.3. Recalling Lemma 2.5 we see that the condition for F̂ in
the above lemma amounts to F̂ ∈ F(S).

Proof

Let
R̂ := 〈A+BF̂ | B̂〉

and
Si := B̂ + (A+BF )B̂ + . . .+ (A+BF )i−1B̂.

Then S1 ⊆ R̂.
Proceeding by induction, assume that Si ⊆ R̂. Then

Si+1 = B̂ + (A+BF )Si ⊆ B̂ + (A+BF̂ )Si +B(F − F̂ )Si,

which is included in R̂ if

(2.16) B(F − F̂ )R̂ ⊆ R̂.
If so, R = Sn ⊆ R̂ by induction.

We now show (2.16). Since F̂ ∈ F(S) and B̂ ⊆ S it follows that R̂ ⊆ S.
Therefore,

B(F − F̂ )R̂ ⊆ B(F − F̂ )S ⊆ B̂ ⊆ R̂
and (2.16) follows. We have thus shown that R ⊆ R̂.

If we interchange F and F̂ in the calculations above, we get R̂ ⊆ R.

Lemma 2.10. Let R and S be (A,B)-invariant, and suppose that R ⊆ S.
Then, if F̂ ∈ F(R), there is an F ∈ F(R) ∩ F(S) such that F |R = F̂ |R.

Proof

Let W be a subspace such that

R⊕W = S.
Let {w1, . . . , wq} be a basis for W. Since S is (A,B)-invariant and W ⊆ S,
we have

Awi = vi +Bui
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for some vi ∈ S and ui ∈ Rm. Now let F : Rn → Rm be such that Fx = F̂ x
for x ∈ R and Fwi = −ui. Then F |R = F̂ |R and (A + BF )R ⊆ R ⊆ S.
Moreover, (A + BF )wi = vi, i.e., (A + BF )W ⊆ S. Hence, (A + BF )S ⊆
S.

We now prove Theorem 2.8.

Proof

We need to show that R∗ as defined by 〈A + BF | Im B ∩ S∗〉 where F is
any friend of S∗, is a reachability subspace in Z, and moreover that it is
maximal.

Since Im B ∩ S∗ ⊆ S∗ we have

R∗ ⊆ 〈A+BF | S∗〉 = S∗ ⊆ Z
and we can always choose G such that Im BG = Im B ∩ S∗. So R∗ is a
reachability subspace in Z.

Next we show that R ⊂ R∗ for all reachability subspaces contained in
Z. If R is an arbitrary reachability subspace in Z, it can be expressed as

R = 〈A+BF0| Im B ∩R〉
for some F0 ∈ F(R). Clearly, R ⊆ S∗. Moreover, by Lemma 2.10 there is
an F1 ∈ F(S∗) such that

(2.17) F1|R = F0|R.
Now if x ∈ S∗ then

B(F − F1)x = (A+BF )x− (A+BF1)x ∈ S∗,

since F,F1 ∈ F(S∗). Hence,

(2.18) B(F − F1)S∗ ⊆ Im B ∩ S∗.

Consequently,

R = 〈A+BF0| Im B ∩R〉(2.19)
= 〈A+BF1| Im B ∩R〉(2.20)
⊆ 〈A+BF1| Im B ∩ S∗〉(2.21)
= 〈A+BF | Im B ∩ S∗〉 = R∗,(2.22)

where (2.20) follows from (2.17), (2.21) follows from R ⊆ S∗, and (2.22)
follows from Lemma 2.9 and (2.18). But R is arbitrary, and therefore R∗ is
the unique maximal reachability subspace in Z.

We conclude this section with an example.

Example 2.5. Compute R∗ contained in Z = ker C for

A =

⎡
⎣1 2 0

0 3 0
0 2 3

⎤
⎦ , B =

⎡
⎣0 1

2 0
3 1

⎤
⎦ and C =

[
1 0 0

]
.
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For this purpose, we need to compute S∗ first. Set S0 = kerC, i.e.,

S0 =

⎡
⎣0 0
1 0
0 1

⎤
⎦

and we check if
AS0 ⊂ S0 + ImB.

Since

[S0, B] =

⎡
⎣0 0 1
1 0 0
0 1 1

⎤
⎦

has full dimension, clearly,

AS0 ⊂ S0 + ImB.

Hence,

S∗ = kerC = Im

⎡
⎣0 0
1 0
0 1

⎤
⎦ = [v1, v2].

(What should we do if S0 �= S∗?) The next step is to determine a friend for
S∗. Since (A+BF )S∗ ⊆ S∗ implies

AS∗ ⊆ S∗ +B(−F )S∗,

Therefore, we form

A[v1, v2] =

⎡
⎣2 0

3 0
2 3

⎤
⎦(2.23)

=

⎡
⎣0 0

3 0
0 3

⎤
⎦+

⎡
⎣0 1

2 0
3 1

⎤
⎦[0 0

2 0

]
.(2.24)

The first term in (2.24) is in S∗ and the second term has the form B[u1, u2].
Hence, to find F we must solve the system

−F [v1, v2] = [u1, u2],

i.e., [
f11 f12 f13

f21 f22 f23

]⎡⎣0 0
1 0
0 1

⎤
⎦ = −

[
0 0
2 0

]
with solution

[
f11 0 0
f21 −2 0

]
.

If we choose f11 = f21 = 0 then A + BF =

⎡
⎣1 0 0
0 3 0
0 0 3

⎤
⎦ . Finally, straight-

forward computations yields

Im B ∩ S∗ = Im

⎡
⎣0
2
3

⎤
⎦ = R∗.
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2.5. Reachability under state constraints

Consider the system

(2.25) ẋ = Ax+Bu

In this section we shall answer the following question. Let Z be an arbitrary
subspace of Rn. Which states can be reached from the origin if we require
that the trajectory lies in Z?

Before giving the main result we state some lemmas.

Lemma 2.11. Let x(t, u) be the solution of a controlled differential equa-
tion and let M be a subspace of Rn. If x(t, u) ∈ M for all t then ẋ(t, u) ∈ M
for all t.

The proof is left as an exercise for the reader.

Lemma 2.12. Consider the system (2.25) and let Z be a subspace of Rn.
If x(t) ∈ Z for t ≥ 0 then x(t) ∈ S∗(Z) for t ≥ 0.

The proof is left as an exercise for the reader.

Lemma 2.13. Consider the system (2.25) and let Z be a subspace of Rn.
If x(0) = 0 and x(t) ∈ Z for t ≥ 0 then x(t) ∈ R∗(Z) for t ≥ 0.

Proof

By Lemma 2.12 we know that x(t) ∈ S∗(Z) for t ≥ 0. Now, let F be a friend
of S∗(Z) and write the input as

u = Fx+ v.

Then
Bv(t) = ẋ(t) − (A+BF )x(t) ∈ S∗(Z) for t ≥ 0,

by Lemma 2.11 and Lemma 2.12. Hence,

Bv(t) ∈ Im B ∩ S∗(Z),

which implies that

x(t) =
∫ t

0
e(A+BF )(t−s)Bv(s) ds ∈ 〈A+BF | Im B ∩ S∗(Z)〉 = R∗(Z).

We can now solve the problem of reachability under constraints.

Theorem 2.14. Let S be the set of states that can be reached from the
origin with trajectories in Z, i.e.,

(2.26) S := {x ∈ Z | ∃ t1 : x(t1) = x and x(t) ∈ Z ∀t ∈ [0, t1]}.
Then,

R∗(Z) = S.
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Proof

We first show that S ⊆ R∗(Z). Let x ∈ S. Then there is an input and a
time t1 such that x(t) ∈ Z and x(t1) = x. By Lemma 2.13 it follows that
x(t) ∈ R∗(Z) for t ≤ t1, and in particular, x(t1) ∈ R∗(Z).

Next we show that R∗(Z) ⊆ S. Let F and G be such that R∗(Z) is the
reachable subspace of the closed-loop system

ẋ = (A+BF )x+BGv.

Clearly, all points in R∗(Z) can be reached by trajectories in R∗(Z). Hence,
R∗(Z) ⊆ S.




