CHAPTER 2

Invariant and controlled invariant subspaces

In this chapter we introduce two important concepts: invariant subspace and controlled invariant subspace, which will be used later on to solve many control problems.

2.1. Invariant subspaces

Consider an n-dimensional linear system

$$
\begin{equation*}
\dot{x}=A x \tag{2.1}
\end{equation*}
$$

where $x \in \mathbb{R}^{n}$.
Definition 2.1. A set $\Omega \subseteq \mathbb{R}^{n}$ is called an invariant set of (2.1) if for any initial condition $x_{0} \in \Omega$, we have $x\left(x_{0}, t\right)=e^{A t} x_{0} \in \Omega, \forall t \geq 0$.

Some trivial examples of invariant sets are \mathbb{R}^{n} and $x=\{0\}$.
In this course we only consider a special class of invariant sets: invariant subspaces. Now let us discuss conditions for a subspace \mathcal{S} to be invariant. Since by Taylor expansion we have

$$
x\left(x_{0}, t\right)=x_{0}+t A x_{0}+\frac{t^{2}}{2} A^{2} x_{0}+\cdots
$$

it is obvious that if $A^{i} x_{0} \in S \forall i \geq 0$, then $x\left(x_{0}, t\right) \in S, \forall t \geq 0$. Naturally this argument is true only if \mathcal{S} is a linear subspace. It is easy to see as a sufficient condition

$$
\begin{equation*}
A z \in \mathcal{S} \forall z \in \mathcal{S} . \tag{2.2}
\end{equation*}
$$

In other words, this condition implies that if we define a mapping from \mathbb{R}^{n} to $\mathbb{R}^{n}: w=A z$, then the image of $S \subseteq \mathbb{R}^{n}$ is contained in \mathcal{S}. We denote this by

$$
\begin{equation*}
A \mathcal{S} \subseteq \mathcal{S} \tag{2.3}
\end{equation*}
$$

Now we show this condition is also necessary for S to be invariant.
Proposition 2.1. A necessary and sufficient condition for a linear subspace \mathcal{S} to be invariant under (2.1) is that condition (2.3) holds.

Proof
We only show the necessity here. Suppose there exists a point $x_{0} \in \mathcal{S}$ such that $A x_{0} \notin \mathcal{S}$. Then when t is sufficiently small, we have

$$
x\left(x_{0}, t\right)=x_{0}+t A x_{0}+\mathcal{O}\left(t^{2}\right)
$$

which does not belong to \mathcal{S}, since \mathcal{S} is closed.
Example 2.1. Consider

$$
\left[\begin{array}{l}
\dot{x_{1}} \\
x_{2}
\end{array}\right]=\left[\begin{array}{cc}
-2 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

Show that $S=\operatorname{span}\left\{\left[\begin{array}{c}-1 \\ 1\end{array}\right]\right\}$ is invariant.
We first use the definition of invariant set to show this. It is easy to see that the set can be redefined as $S=\left\{x \in \mathbb{R}^{2}: x_{1}+x_{2}=0\right\}$. Then to show S to be invariant is to show $x_{1}\left(x_{0}, t\right)+x_{2}\left(x_{0}, t\right)=0 \forall t \geq 0$ if $x_{0} \in S$. This is equivalent to showing $\dot{x}_{1}+\dot{x}_{2}=0$ for all $\left(x_{1}, x_{2}\right)^{T} \in S$. We have $\dot{x}_{1}+\dot{x}_{2}=-2 x_{2}-x_{2}+x_{1}=-\left(x_{1}+x_{2}\right)=0$ if $\left(x_{1}, x_{2}\right)^{T} \in S$.

We can also show this with Proposition 2.1, since $A\left[\begin{array}{c}-1 \\ 1\end{array}\right]=-\left[\begin{array}{c}-1 \\ 1\end{array}\right]$.
REMARK 2.1. As an example to show the above result is only true for subspaces, we consider a circle defined by $R=\left\{\left(x_{1}, x_{2}\right): x_{1}^{2}+x_{2}^{2}=1\right\}$. It is easy to show (as an exercise) that this set is invariant under the system

$$
\begin{aligned}
& \dot{x}_{1}=\omega x_{2} \\
& \dot{x}_{2}=-\omega x_{1},
\end{aligned}
$$

where ω is any positive number.
We ask the reader to check if $A z \subset R$ for any $z \in R$.
Then we can use condition (2.3) as an alternative definition for invariant subspace.

Definition 2.2. A linear subspace \mathcal{S} is A-invariant (invariant under $\dot{x}=A x)$ iff $A \mathcal{S} \subseteq \mathcal{S}$.

2.2. Controlled invariant subspaces

Now we consider a control system

$$
\begin{equation*}
\dot{x}=A x+B u \tag{2.4}
\end{equation*}
$$

where $x \in \mathbb{R}^{n}$ and $u \in \mathbb{R}^{m}$.
Definition 2.3. \mathcal{S} is called a controlled invariant subspace of (2.4) if there exists a feedback control $u=F x$ such that \mathcal{S} is an invariant subspace of

$$
\dot{x}=(A+B F) x .
$$

Similar to invariant subspace, we can also give another equivalent definition.

Definition 2.4. \mathcal{S} is an (A, B)-invariant (controlled invariant) subspace if there exists a matrix F such that

$$
\begin{equation*}
(A+B F) \mathcal{S} \subseteq \mathcal{S} \tag{2.5}
\end{equation*}
$$

Such an F is called a friend of \mathcal{S}.

We denote the set of friends by $\mathcal{F}(\mathcal{S})$. The following theorem provides a fundamental characterization of (A, B)-invariant subspaces that removes the explicit involvement of the feedback matrix F.

Theorem 2.2. \mathcal{S} is (A, B)-invariant if and only if

$$
\begin{equation*}
A \mathcal{S} \subseteq \mathcal{S}+\operatorname{Im} B \tag{2.6}
\end{equation*}
$$

Proof
Necessity: Suppose F is a friend, then

$$
(A+B F) \mathcal{S} \subseteq \mathcal{S}
$$

or

$$
A \mathcal{S} \subseteq \mathcal{S}-B(F \mathcal{S})
$$

Since $B(F \mathcal{S}) \subseteq \operatorname{Im} B$, thus (2.6) holds.
Sufficiency: The proof is constructive and is given as follows.
We now give an algorithm for finding a friend of \mathcal{V}, which also serves as a proof of the sufficiency of Theorem 2.2.

Algorithm for finding F

Let $\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}$ be a basis for \mathcal{V}. Since \mathcal{V} satisfies $A \mathcal{V} \subseteq \mathcal{V}+\operatorname{Im} B$, there is for each $i=1, \ldots, r$ a $w_{i} \in \mathcal{V}$ and a $u_{i} \in \mathbb{R}^{m}$ such that

$$
A v_{i}=w_{i}+B u_{i}
$$

Let F be a $m \times n$-matrix such that $F v_{i}=-u_{i}$ for $i=1,2, \ldots, r$ (if $r<n$ then F is not unique). Then $A v_{i}=w_{i}-B F v_{i}$, i.e., $(A+B F) v_{i}=w_{i} \in \mathcal{V}$ and therefore $(A+B F) \mathcal{V} \subseteq \mathcal{V}$.

Example 2.2. Let $A=\left[\begin{array}{ll}0 & 1 \\ 2 & 1\end{array}\right]$ and $B=\left[\begin{array}{l}0 \\ 1\end{array}\right]$. Is the subspace $\mathcal{V}=\{x \in$ $\left.\mathbb{R}^{2}: x_{1}=x_{2}\right\}(A, B)$-invariant? If so, find a friend of \mathcal{V}.

Clearly, \mathcal{V} is spanned by $v=\left[\begin{array}{ll}1 & 1\end{array}\right]^{\prime}$. Since

$$
A v=\left[\begin{array}{ll}
0 & 1 \\
2 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
3
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]+2\left[\begin{array}{l}
0 \\
1
\end{array}\right] \in \mathcal{V}+\operatorname{Im} B
$$

\mathcal{V} is (A, B)-invariant, and we can let $u=2$. To find F we must solve the under-determined system of equations $F v=-u$, i.e.,

$$
\left[\begin{array}{ll}
f_{1} & f_{2}
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=-2
$$

The set $\mathcal{F}(\mathcal{V})$ is the affine space $\{(\lambda-2,-\lambda) ; \lambda \in \mathbb{R}\}$. Choose, e.g., $F=$ $\left[\begin{array}{cc}-2 & 0\end{array}\right]$.

Is the subspace $\mathcal{V}:=\left\{x \in \mathbb{R}^{2}: x_{1}=0\right\}(A, B)$-invariant?

2.3. Reachability subspaces

In the rest of this chapter, we study the most elementary class of controlled invariant subspaces: reachability (controllability) subspace.

Definition 2.5. We use the notation $\langle A \mid S\rangle$ to denote the minimal A invariant subspace that contains subspace S.

Naturally if S is already A-invariant, then $\langle A \mid S\rangle=S .\langle A \mid S\rangle$ can be computed in the following way:
(1) Let $S_{0}=S$, check if $A S_{0} \subseteq S_{0}$. If yes, stop. Otherwise,
(2) Let $S_{k+1}=A S_{k}+S_{k}, k \geq 0$.
(3) Check if $A S_{k+1} \subseteq S_{k+1}$. If yes, stop. Otherwise return to step 2.

Consider again (2.4). Recall that the reachable (controllable) subspace of (2.4) can be defined with our notation as

$$
\langle A \mid \operatorname{Im} B\rangle=\operatorname{span}\left\{B, A B, \cdots, A^{n-1} B\right\}
$$

namely, the minimal A-invariant subspace that contains $\operatorname{Im} B$. However, for many complex control problems, such as the problem of controllability under constraints discussed in the introduction, more refined study of reachability is needed.

Now consider the feedback law

$$
\begin{equation*}
u=F x+G v . \tag{2.7}
\end{equation*}
$$

The corresponding closed-loop system

$$
\dot{x}=(A+B F) x+B G v
$$

has the reachable subspace

$$
\begin{equation*}
\mathcal{R}=\langle A+B F \mid \operatorname{Im} B G\rangle \tag{2.8}
\end{equation*}
$$

Remark 2.2. By construction, \mathcal{R} is (A, B)-invariant.
Definition 2.6. A subspace \mathcal{R} is called a reachability subspace of (2.4) if there are F and G such that (2.8) holds.

Example 2.3. If $G=I$ then

$$
\mathcal{R}=\langle A+B F \mid \operatorname{Im} B\rangle=\langle A \mid \operatorname{Im} B\rangle
$$

is the reachable subspace. If $G=0$ then $\mathcal{R}=0$. For a SISO-system it is obvious that these are the only possible reachability subspaces.

We now proceed with the analysis of reachability subspaces. The first theorem shows that the matrix G can be removed from the characterization of \mathcal{R} at the price of an implicit characterization, which however is of great use.

THEOREM 2.3. A subspace \mathcal{R} is a reachability subspace if and only if there is an F such that

$$
\begin{equation*}
\mathcal{R}=\langle A+B F \mid \operatorname{Im} B \cap \mathcal{R}\rangle \tag{2.9}
\end{equation*}
$$

Proof

Necessity: Suppose \mathcal{R} is a reachability subspace, i.e.,

$$
\begin{equation*}
\mathcal{R}=\langle A+B F \mid \operatorname{Im} B G\rangle \tag{2.10}
\end{equation*}
$$

for some F and G. Then $\operatorname{Im} B G \subseteq \mathcal{R}$ and $\operatorname{Im} B G \subseteq \operatorname{Im} B$, i.e.,

$$
\operatorname{Im} B G \subseteq \operatorname{Im} B \cap \mathcal{R}
$$

Hence,

$$
\begin{equation*}
\mathcal{R} \subseteq\langle A+B F \mid \operatorname{Im} B \cap \mathcal{R}\rangle \tag{2.11}
\end{equation*}
$$

But \mathcal{R} is (A, B)-invariant and therefore

$$
(A+B F)^{k} \mathcal{R} \subseteq \mathcal{R} \text { for } k \geq 1
$$

and

$$
\begin{equation*}
\langle A+B F \mid \operatorname{Im} B \cap \mathcal{R}\rangle \subseteq \mathcal{R} \tag{2.12}
\end{equation*}
$$

Now (2.9) follows from (2.11) and (2.12).
Sufficiency: Suppose that (2.9) holds. It is enough to show that there is a G such that $\operatorname{Im} B \cap \mathcal{R}=\operatorname{Im} B G$, since this will imply (2.10).

Let $p_{1}, p_{2}, \ldots, p_{q}$ be a basis for $\operatorname{Im} B \cap \mathcal{R}$. Then there is a linearly independent set $\left\{u_{1}, u_{2}, \ldots, u_{q}\right\}$ such that

$$
p_{i}=B u_{i} \quad i=1,2, \ldots, q
$$

since if the u_{i} 's were linearly dependent then the p_{i} 's would be linearly dependent as well. If we let the input space be R^{m} it holds that $q \leq \operatorname{dim}(\operatorname{Im} B) \leq$ m. Choose u_{q+1}, \ldots, u_{m} such that $\left\{u_{1}, \ldots, u_{m}\right\}$ is a basis for \mathbb{R}^{m}. We want

$$
B G u_{i}= \begin{cases}p_{i} & i=1,2, \ldots, q \\ 0 & i=q+1, \ldots, m\end{cases}
$$

which yields $\operatorname{Im} B G=\operatorname{Im} B \cap \mathcal{R}$, i.e.,

$$
B G\left[u_{1}, \ldots, u_{m}\right]=\left[p_{1}, \ldots, p_{q}, 0, \ldots, 0\right]=B\left[u_{1}, \ldots, u_{q}, 0, \ldots, 0\right]
$$

This is achieved by

$$
G:=\left[u_{1}, \ldots, u_{q}, 0, \ldots, 0\right]\left[u_{1}, u_{2}, \ldots, u_{m}\right]^{-1}
$$

We know that the reachability subspace \mathcal{R} is (A, B)-invariant and it is obvious that F in

$$
\begin{equation*}
\mathcal{R}=\langle A+B F \mid \operatorname{Im} B \cap \mathcal{R}\rangle \tag{2.13}
\end{equation*}
$$

is a friend of \mathcal{R}, i.e., $F \in \mathcal{F}(\mathcal{R})$.
Example 2.4. Consider

$$
\begin{aligned}
& \dot{x}_{1}=x_{1}+x_{2} \\
& \dot{x}_{2}=u_{1} \\
& \dot{x}_{3}=x_{1}+u_{2}
\end{aligned}
$$

We will show that $V=\operatorname{span}\left\{e_{1}, e_{2}\right\}$ is a reachability subspace.

It is easy to compute that $F=\left(\begin{array}{ccc}0 & 0 & 0 \\ -1 & 0 & 0\end{array}\right)$ is a friend of V, and $\operatorname{Im} B \cap V=\operatorname{span}\left\{e_{2}\right\}$. Then, it is easy to calculate that $(A+B F) e_{2}=e_{1}$ and $(A+B F) e_{1}=e_{1}$. Thus $<A+B F \mid \operatorname{Im} B \cap V>=V$. We note that $V_{1}=\operatorname{span}\left\{e_{1}\right\}$ is an (A, B)-invariant subspace but not a reachability subspace since $\operatorname{Im} B \cap V_{1}=0$.

The next theorem shows that the representation (2.13) is independent of the actual choice of $F \in \mathcal{F}(\mathcal{R})$.

THEOREM 2.4. Let \mathcal{R} be a reachability subspace and let $\hat{F} \in \mathcal{F}(\mathcal{R})$, i.e. an arbitrary friend of \mathcal{R}. Then

$$
\mathcal{R}=\langle A+B \hat{F} \mid \operatorname{Im} B \cap \mathcal{R}\rangle
$$

Proof
From Theorem 2.3 follows the existence of an F such that

$$
\mathcal{R}=\langle A+B F \mid \operatorname{Im} B \cap \mathcal{R}\rangle
$$

Now let $\hat{F} \in \mathcal{F}(\mathcal{R})$ be an arbitrary friend and form

$$
\hat{\mathcal{R}}=\langle A+B \hat{F} \mid \operatorname{Im} B \cap \mathcal{R}\rangle
$$

Since $(A+B \hat{F}) \mathcal{R} \subseteq \mathcal{R}$, it holds that $\hat{\mathcal{R}} \subseteq \mathcal{R}$.
We shall show that $R \subseteq \hat{\mathcal{R}}$ by induction. Clearly $\operatorname{Im} B \cap \mathcal{R} \subseteq \hat{\mathcal{R}}$. Assume that

$$
(A+B F)^{k}(\operatorname{Im} B \cap \mathcal{R}) \subseteq \hat{\mathcal{R}}
$$

Then

$$
\begin{aligned}
(A+B F)^{k+1}(\operatorname{Im} B \cap \mathcal{R}) & \subseteq(A+B F) \hat{\mathcal{R}} \\
& \subseteq(A+B \hat{F}) \hat{\mathcal{R}}+B(F-\hat{F}) \hat{\mathcal{R}} \\
& \subseteq \hat{\mathcal{R}} \text { if } B(F-\hat{F}) \hat{\mathcal{R}} \subseteq \hat{\mathcal{R}}
\end{aligned}
$$

If we can show the last inclusion, then it follows by induction that $R \subseteq \hat{\mathcal{R}}$.
We need to introduce a lemma here in order to carry on the proof.
Lemma 2.5. Let $F_{1} \in \mathcal{F}(\mathcal{V})$. Then $F_{2} \in \mathcal{F}(\mathcal{V})$ if and only if $B\left(F_{1}-\right.$ $\left.F_{2}\right) \mathcal{V} \subseteq \mathcal{V}$.

Proof (Proof of the lemma)
(only if) Suppose $F_{1}, F_{2} \in \mathcal{F}(\mathcal{V})$. Then for all $v \in \mathcal{V}$ it holds that $(A+$ $\left.B F_{1}\right) v \in \mathcal{V}$ and $\left(A+B F_{2}\right) v \in \mathcal{V}$, which implies that $B\left(F_{1}-F_{2}\right) v \in \mathcal{V}$.
(if) Let $v \in \mathcal{V}$. Then $\left(A+B F_{1}\right) v+B\left(F_{2}-F_{1}\right) v=\left(A+B F_{2}\right) v \in \mathcal{V}$, since the terms on the left hand side are in \mathcal{V}.

Now we return to the proof of the theorem. Since $\hat{\mathcal{R}} \subseteq \mathcal{R}$ it holds that

$$
B(F-\hat{F}) \hat{\mathcal{R}} \subseteq B(F-\hat{F}) \mathcal{R} \subseteq\{\text { Lemma } 2.5\} \subseteq \mathcal{R}
$$

But $B(F-\hat{F}) \hat{\mathcal{R}} \subseteq \operatorname{Im} B$ and therefore

$$
B(F-\hat{F}) \hat{\mathcal{R}} \subseteq \operatorname{Im} B \cap \mathcal{R} \subseteq \hat{\mathcal{R}} .
$$

Combining Theorem 2.3 and Theorem 2.4 we obtain the following result, which can be used to test whether a given subspace is a reachability subspace.

Corollary 2.6. Suppose \mathcal{V} is (A, B)-invariant and let $F \in \mathcal{F}(\mathcal{V})$ be an arbitrary friend of \mathcal{V}. The necessary and sufficient condition for \mathcal{V} to be a reachability subspace is that

$$
\langle A+B F \mid \operatorname{Im} B \cap \mathcal{V}\rangle=\mathcal{V} .
$$

2.4. Maximal reachability subspaces

Consider the class $S(\mathcal{Z})$ of (A, B)-invariant subspaces contained in \mathcal{Z}, and in particular reachability subspaces \mathcal{R} such that $\mathcal{R} \in S(\mathcal{Z})$. All these satisfy

$$
\begin{equation*}
\mathcal{R} \subseteq \mathcal{S}^{*}(\mathcal{Z}) \tag{2.14}
\end{equation*}
$$

where $\mathcal{S}^{*}(\mathcal{Z})$ is the maximal (A, B)-invariant subspace in \mathcal{Z}. The existence of \mathcal{S}^{*} is shown as follows.

Lemma 2.7. Let \mathcal{Z} be a subspace of \mathbb{R}^{n}. Then, the class $S(\mathcal{Z})$ of all (A, B)-invariant subspaces $\mathcal{S} \subseteq \mathcal{Z}$ has a maximal element $\mathcal{S}^{*}(\mathcal{Z})$ in the sense that

$$
\mathcal{S} \subseteq \mathcal{S}^{*}(\mathcal{Z}) \text { for all } \mathcal{S} \in S(\mathcal{Z})
$$

Proof

Note first that the set $S(\mathcal{Z})$ is closed under addition, i.e., if $\mathcal{S}_{1}, \mathcal{S}_{2} \in S(\mathcal{Z})$, then $\mathcal{S}_{1}+\mathcal{S}_{2} \subseteq \mathcal{Z}$ and

$$
A\left(\mathcal{S}_{1}+\mathcal{S}_{2}\right)=A \mathcal{S}_{1}+A \mathcal{S}_{2} \subseteq \mathcal{S}_{1}+\mathcal{S}_{2}+\operatorname{Im} B
$$

Hence, $\mathcal{S}_{1}+\mathcal{S}_{2} \in S(\mathcal{Z})$.
Since \mathcal{Z} is of finite dimension, there is an element $\mathcal{S}^{*} \in S(\mathcal{Z})$ of largest dimension. If $\mathcal{S} \in S(\mathcal{Z})$, then $\mathcal{S}+\mathcal{S}^{*} \in S(\mathcal{Z})$ and $\mathcal{S}^{*} \subseteq \mathcal{S}+\mathcal{S}^{*}$. However, \mathcal{S}^{*} has maximal dimension and therefore, $\operatorname{dim}\left(\mathcal{S}+\mathcal{S}^{*}\right)=\operatorname{dim} \mathcal{S}^{*}$, and then, $\mathcal{S}^{*}=\mathcal{S}+\mathcal{S}^{*}$, that is, $\mathcal{S} \subseteq \mathcal{S}^{*}$. Thus, \mathcal{S}^{*} is maximal in terms of subspace inclusion.

Is there also a maximal \mathcal{R} that satisfies (2.14)? Maximal in the sense that it contains all other such reachability subspaces.

Theorem 2.8. Let \mathcal{S}^{*} be the maximal (A, B)-invariant subspace in \mathcal{Z}, and let $F \in \mathcal{F}\left(\mathcal{S}^{*}\right)$. Then the maximal reachability subspace in \mathcal{Z} is

$$
\begin{equation*}
\mathcal{R}^{*}:=\left\langle A+B F \mid \operatorname{Im} B \cap \mathcal{S}^{*}\right\rangle . \tag{2.15}
\end{equation*}
$$

Moreover, $F \in \mathcal{F}\left(\mathcal{R}^{*}\right)$, i.e.,

$$
\mathcal{F}\left(\mathcal{R}^{*}\right) \supseteq \mathcal{F}\left(\mathcal{S}^{*}\right)
$$

We develop the proof with the help of the following two lemmas. The first of them is a refinement of Theorem 2.4, where we learn that a reachability subspace can in fact be characterized by any friend of the smaller class of friends of an (A, B)-invariant subspace which generates the reachability subspace in a specific way.

Lemma 2.9. Let \mathcal{S} be (A, B)-invariant and let

$$
\mathcal{R}:=\langle A+B F \mid \hat{\mathcal{B}}\rangle,
$$

where $F \in \mathcal{F}(\mathcal{S})$ and $\hat{\mathcal{B}}=\operatorname{Im} B \cap \mathcal{S}$. If \hat{F} is any matrix such that $B(\hat{F}-$ $F) \mathcal{S} \subset \mathcal{S}$ then we also have that $\mathcal{R}=\langle A+B \hat{F} \mid \hat{\mathcal{B}}\rangle$.

Remark 2.3. Recalling Lemma 2.5 we see that the condition for \hat{F} in the above lemma amounts to $\hat{F} \in \mathcal{F}(\mathcal{S})$.

Proof
Let

$$
\hat{\mathcal{R}}:=\langle A+B \hat{F} \mid \hat{\mathcal{B}}\rangle
$$

and

$$
\mathcal{S}_{i}:=\hat{\mathcal{B}}+(A+B F) \hat{\mathcal{B}}+\ldots+(A+B F)^{i-1} \hat{\mathcal{B}} .
$$

Then $\mathcal{S}_{1} \subseteq \hat{\mathcal{R}}$.
Proceeding by induction, assume that $\mathcal{S}_{i} \subseteq \hat{\mathcal{R}}$. Then

$$
\mathcal{S}_{i+1}=\hat{\mathcal{B}}+(A+B F) \mathcal{S}_{i} \subseteq \hat{\mathcal{B}}+(A+B \hat{F}) \mathcal{S}_{i}+B(F-\hat{F}) \mathcal{S}_{i}
$$

which is included in $\hat{\mathcal{R}}$ if

$$
\begin{equation*}
B(F-\hat{F}) \hat{\mathcal{R}} \subseteq \hat{\mathcal{R}} \tag{2.16}
\end{equation*}
$$

If so, $\mathcal{R}=\mathcal{S}_{n} \subseteq \hat{\mathcal{R}}$ by induction.
We now show (2.16). Since $\hat{F} \in \mathcal{F}(\mathcal{S})$ and $\hat{\mathcal{B}} \subseteq \mathcal{S}$ it follows that $\hat{\mathcal{R}} \subseteq \mathcal{S}$. Therefore,

$$
B(F-\hat{F}) \hat{\mathcal{R}} \subseteq B(F-\hat{F}) \mathcal{S} \subseteq \hat{\mathcal{B}} \subseteq \hat{\mathcal{R}}
$$

and (2.16) follows. We have thus shown that $\mathcal{R} \subseteq \hat{\mathcal{R}}$.
If we interchange F and \hat{F} in the calculations above, we get $\hat{\mathcal{R}} \subseteq \mathcal{R}$.
Lemma 2.10. Let \mathcal{R} and \mathcal{S} be (A, B)-invariant, and suppose that $\mathcal{R} \subseteq \mathcal{S}$. Then, if $\hat{F} \in \mathcal{F}(\mathcal{R})$, there is an $F \in \mathcal{F}(\mathcal{R}) \cap \mathcal{F}(\mathcal{S})$ such that $\left.F\right|_{\mathcal{R}}=\left.\hat{F}\right|_{\mathcal{R}}$.

Proof
Let \mathcal{W} be a subspace such that

$$
\mathcal{R} \oplus \mathcal{W}=\mathcal{S}
$$

Let $\left\{w_{1}, \ldots, w_{q}\right\}$ be a basis for \mathcal{W}. Since \mathcal{S} is (A, B)-invariant and $\mathcal{W} \subseteq \mathcal{S}$, we have

$$
A w_{i}=v_{i}+B u_{i}
$$

for some $v_{i} \in \mathcal{S}$ and $u_{i} \in \mathbb{R}^{m}$. Now let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be such that $F x=\hat{F} x$ for $x \in \mathcal{R}$ and $F w_{i}=-u_{i}$. Then $\left.F\right|_{\mathcal{R}}=\left.\hat{F}\right|_{\mathcal{R}}$ and $(A+B F) \mathcal{R} \subseteq \mathcal{R} \subseteq \mathcal{S}$. Moreover, $(A+B F) w_{i}=v_{i}$, i.e., $(A+B F) \mathcal{W} \subseteq \mathcal{S}$. Hence, $(A+B F) \mathcal{S} \subseteq$ \mathcal{S}.

We now prove Theorem 2.8.

Proof

We need to show that \mathcal{R}^{*} as defined by $\left\langle A+B F \mid \operatorname{Im} B \cap \mathcal{S}^{*}\right\rangle$ where F is any friend of \mathcal{S}^{*}, is a reachability subspace in \mathcal{Z}, and moreover that it is maximal.

Since $\operatorname{Im} B \cap \mathcal{S}^{*} \subseteq \mathcal{S}^{*}$ we have

$$
\mathcal{R}^{*} \subseteq\left\langle A+B F \mid \mathcal{S}^{*}\right\rangle=\mathcal{S}^{*} \subseteq \mathcal{Z}
$$

and we can always choose G such that $\operatorname{Im} B G=\operatorname{Im} B \cap \mathcal{S}^{*}$. So \mathcal{R}^{*} is a reachability subspace in Z.

Next we show that $\mathcal{R} \subset \mathcal{R}^{*}$ for all reachability subspaces contained in \mathcal{Z}. If \mathcal{R} is an arbitrary reachability subspace in \mathcal{Z}, it can be expressed as

$$
\mathcal{R}=\left\langle A+B F_{0} \mid \operatorname{Im} B \cap \mathcal{R}\right\rangle
$$

for some $F_{0} \in \mathcal{F}(\mathcal{R})$. Clearly, $\mathcal{R} \subseteq \mathcal{S}^{*}$. Moreover, by Lemma 2.10 there is an $F_{1} \in \mathcal{F}\left(S^{*}\right)$ such that

$$
\begin{equation*}
\left.F_{1}\right|_{\mathcal{R}}=\left.F_{0}\right|_{\mathcal{R}} \tag{2.17}
\end{equation*}
$$

Now if $x \in \mathcal{S}^{*}$ then

$$
B\left(F-F_{1}\right) x=(A+B F) x-\left(A+B F_{1}\right) x \in \mathcal{S}^{*}
$$

since $F, F_{1} \in \mathcal{F}\left(\mathcal{S}^{*}\right)$. Hence,

$$
\begin{equation*}
B\left(F-F_{1}\right) \mathcal{S}^{*} \subseteq \operatorname{Im} B \cap \mathcal{S}^{*} \tag{2.18}
\end{equation*}
$$

Consequently,

$$
\begin{align*}
\mathcal{R} & =\left\langle A+B F_{0} \mid \operatorname{Im} B \cap \mathcal{R}\right\rangle \tag{2.19}\\
& =\left\langle A+B F_{1} \mid \operatorname{Im} B \cap \mathcal{R}\right\rangle \tag{2.20}\\
& \subseteq\left\langle A+B F_{1} \mid \operatorname{Im} B \cap \mathcal{S}^{*}\right\rangle \tag{2.21}\\
& =\left\langle A+B F \mid \operatorname{Im} B \cap \mathcal{S}^{*}\right\rangle=\mathcal{R}^{*} \tag{2.22}
\end{align*}
$$

where (2.20) follows from (2.17), (2.21) follows from $\mathcal{R} \subseteq \mathcal{S}^{*}$, and (2.22) follows from Lemma 2.9 and (2.18). But \mathcal{R} is arbitrary, and therefore \mathcal{R}^{*} is the unique maximal reachability subspace in \mathcal{Z}.

We conclude this section with an example.
Example 2.5. Compute \mathcal{R}^{*} contained in $\mathcal{Z}=\operatorname{ker} C$ for

$$
A=\left[\begin{array}{lll}
1 & 2 & 0 \\
0 & 3 & 0 \\
0 & 2 & 3
\end{array}\right], B=\left[\begin{array}{ll}
0 & 1 \\
2 & 0 \\
3 & 1
\end{array}\right] \text { and } C=\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]
$$

For this purpose, we need to compute \mathcal{S}^{*} first. Set $\mathcal{S}_{0}=\operatorname{ker} C$, i.e.,

$$
S_{0}=\left[\begin{array}{ll}
0 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right]
$$

and we check if

$$
A S_{0} \subset S_{0}+\operatorname{ImB}
$$

Since

$$
\left[S_{0}, B\right]=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 1
\end{array}\right]
$$

has full dimension, clearly,

$$
A S_{0} \subset S_{0}+\operatorname{ImB}
$$

Hence,

$$
\mathcal{S}^{*}=\operatorname{ker} C=\operatorname{Im}\left[\begin{array}{ll}
0 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right]=\left[v_{1}, v_{2}\right] .
$$

(What should we do if $S_{0} \neq \mathcal{S}^{*}$?) The next step is to determine a friend for \mathcal{S}^{*}. Since $(A+B F) \mathcal{S}^{*} \subseteq \mathcal{S}^{*}$ implies

$$
A \mathcal{S}^{*} \subseteq \mathcal{S}^{*}+B(-F) \mathcal{S}^{*}
$$

Therefore, we form

$$
\begin{align*}
A\left[v_{1}, v_{2}\right] & =\left[\begin{array}{ll}
2 & 0 \\
3 & 0 \\
2 & 3
\end{array}\right] \tag{2.23}\\
& =\left[\begin{array}{ll}
0 & 0 \\
3 & 0 \\
0 & 3
\end{array}\right]+\left[\begin{array}{ll}
0 & 1 \\
2 & 0 \\
3 & 1
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
2 & 0
\end{array}\right] . \tag{2.24}
\end{align*}
$$

The first term in (2.24) is in \mathcal{S}^{*} and the second term has the form $B\left[u_{1}, u_{2}\right]$. Hence, to find F we must solve the system

$$
-F\left[v_{1}, v_{2}\right]=\left[u_{1}, u_{2}\right],
$$

i.e.,

$$
\left[\begin{array}{lll}
f_{11} & f_{12} & f_{13} \\
f_{21} & f_{22} & f_{23}
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right]=-\left[\begin{array}{ll}
0 & 0 \\
2 & 0
\end{array}\right] \text { with solution }\left[\begin{array}{rrr}
f_{11} & 0 & 0 \\
f_{21} & -2 & 0
\end{array}\right] .
$$

If we choose $f_{11}=f_{21}=0$ then $A+B F=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3\end{array}\right]$. Finally, straightforward computations yields

$$
\operatorname{Im} B \cap \mathcal{S}^{*}=\operatorname{Im}\left[\begin{array}{l}
0 \\
2 \\
3
\end{array}\right]=\mathcal{R}^{*}
$$

2.5. Reachability under state constraints

Consider the system

$$
\begin{equation*}
\dot{x}=A x+B u \tag{2.25}
\end{equation*}
$$

In this section we shall answer the following question. Let \mathcal{Z} be an arbitrary subspace of \mathbb{R}^{n}. Which states can be reached from the origin if we require that the trajectory lies in \mathcal{Z} ?

Before giving the main result we state some lemmas.
Lemma 2.11. Let $x(t, u)$ be the solution of a controlled differential equation and let \mathcal{M} be a subspace of \mathbb{R}^{n}. If $x(t, u) \in \mathcal{M}$ for all t then $\dot{x}(t, u) \in \mathcal{M}$ for all t.

The proof is left as an exercise for the reader.
Lemma 2.12. Consider the system (2.25) and let \mathcal{Z} be a subspace of \mathbb{R}^{n}. If $x(t) \in \mathcal{Z}$ for $t \geq 0$ then $x(t) \in \mathcal{S}^{*}(\mathcal{Z})$ for $t \geq 0$.

The proof is left as an exercise for the reader.
Lemma 2.13. Consider the system (2.25) and let \mathcal{Z} be a subspace of \mathbb{R}^{n}. If $x(0)=0$ and $x(t) \in \mathcal{Z}$ for $t \geq 0$ then $x(t) \in \mathcal{R}^{*}(\mathcal{Z})$ for $t \geq 0$.

Proof
By Lemma 2.12 we know that $x(t) \in \mathcal{S}^{*}(\mathcal{Z})$ for $t \geq 0$. Now, let F be a friend of $\mathcal{S}^{*}(\mathcal{Z})$ and write the input as

$$
u=F x+v
$$

Then

$$
B v(t)=\dot{x}(t)-(A+B F) x(t) \in \mathcal{S}^{*}(\mathcal{Z}) \text { for } t \geq 0
$$

by Lemma 2.11 and Lemma 2.12. Hence,

$$
B v(t) \in \operatorname{Im} B \cap \mathcal{S}^{*}(\mathcal{Z})
$$

which implies that

$$
x(t)=\int_{0}^{t} e^{(A+B F)(t-s)} B v(s) d s \in\left\langle A+B F \mid \operatorname{Im} B \cap \mathcal{S}^{*}(\mathcal{Z})\right\rangle=\mathcal{R}^{*}(\mathcal{Z})
$$

We can now solve the problem of reachability under constraints.
Theorem 2.14. Let \mathcal{S} be the set of states that can be reached from the origin with trajectories in \mathcal{Z}, i.e.,

$$
\begin{equation*}
S:=\left\{x \in \mathcal{Z} \mid \exists t_{1}: x\left(t_{1}\right)=x \text { and } x(t) \in \mathcal{Z} \forall t \in\left[0, t_{1}\right]\right\} \tag{2.26}
\end{equation*}
$$

Then,

$$
\mathcal{R}^{*}(\mathcal{Z})=S
$$

Proof

We first show that $\mathcal{S} \subseteq \mathcal{R}^{*}(\mathcal{Z})$. Let $x \in \mathcal{S}$. Then there is an input and a time t_{1} such that $x(t) \in \mathcal{Z}$ and $x\left(t_{1}\right)=x$. By Lemma 2.13 it follows that $x(t) \in \mathcal{R}^{*}(\mathcal{Z})$ for $t \leq t_{1}$, and in particular, $x\left(t_{1}\right) \in \mathcal{R}^{*}(\mathcal{Z})$.

Next we show that $\mathcal{R}^{*}(\mathcal{Z}) \subseteq \mathcal{S}$. Let F and G be such that $\mathcal{R}^{*}(\mathcal{Z})$ is the reachable subspace of the closed-loop system

$$
\dot{x}=(A+B F) x+B G v .
$$

Clearly, all points in $\mathcal{R}^{*}(\mathcal{Z})$ can be reached by trajectories in $\mathcal{R}^{*}(\mathcal{Z})$. Hence, $\mathcal{R}^{*}(\mathcal{Z}) \subseteq \mathcal{S}$.

