
CHAPTER 3

The disturbance decoupling problem (DDP)

3.1. Geometric formulation

Consider the system {
ẋ = Ax+Bu+Ew
y = Cx.

Problem 3.1 (Disturbance decoupling). Find a state feedback

u = Fx+ v

such that the output y is unaffected by the disturbance w, namely for any
w1,

y|w=w1 = y|w=0.

Under the feedback

u = Fx+ v

the closed loop system becomes

(3.1)
{
ẋ = (A+BF )x+Bv + Ew
y = Cx.

Assuming x(0) = 0, the equations (3.1) can be solved as

(3.2) y(t) =
∫ t

0
Ce(A+BF )(t−s)Bv(s) ds+

∫ t

0
Ce(A+BF )(t−s)Ew(s) ds.

The requirement for disturbance decoupling is now that the last term in
(3.2) be zero for any w. Or equivalently, in any derivative y(i) i = 1, 2, · · · ,
w should not appear. For the sake of simplicity, let us first assume v = 0.
Since

y(1)(t) = C(A+BF )x(t) + CEw(t),

we must have CE = 0. Deductively, under the assumption C(A+BF )i−2E =
0, i ≥ 2, we have

y(i) = C(A+BF )ix+ C(A+BF )i−1Ew.
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22 3. THE DISTURBANCE DECOUPLING PROBLEM (DDP)

Thus we must have

(3.3)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

CE = 0
C(A+BF )E = 0
C(A+BF )2E = 0

...
C(A+BF )n−1E = 0

The reason that we only need to have the first n identities is the Cayley-
Hamilton theorem. The system is nonlinear in F and looks quite compli-
cated! However, (3.3) can be stated as

(3.4)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Im E ⊆ kerC
(A+BF ) Im E ⊆ kerC

(A+BF )2 Im E ⊆ kerC
...

(A+BF )n−1 Im E ⊆ kerC,

which is equivalent to

Im E + (A+BF ) Im E + . . .+ (A+BF )n−1 Im E ⊆ kerC,

i.e.,

(3.5) 〈A+BF | Im E〉 ⊆ kerC.

The subspace V := 〈A+BF | Im E〉 has the invariance property

(3.6) (A+BF )V ⊆ V,
i.e., it is (A+BF )-invariant, or controlled invariant.

Hence, the disturbance decoupling problem has now been translated into
the following geometric problem with linear structure.

Problem 3.2. Find a subspace V such that

(1) Im E ⊆ V ⊆ kerC
(2) V is controlled invariant.

We now proceed with the solution of the disturbance decoupling prob-
lem, as formulated in Problem 3.2. It turns out that among all (A,B)-
invariant subspaces contained in kerC (or any a priori given subspace Z)
there is a maximal one in the sense of set inclusion, as we discussed in the
previous chapter.

The solvability of the disturbance decoupling problem can now be for-
mulated in terms of V∗ := S∗(kerC).

Theorem 3.1. The disturbance decoupling problem is solvable if and
only if

Im E ⊆ V∗.
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Proof

(if) Since V∗ is (A,B)-invariant, by Theorem 2.2, there is an F such that
(A+BF )V∗ ⊆ V∗. If Im E ⊆ V∗, then

〈A+BF | Im E〉 ⊆ 〈A+BF |V∗〉 = V∗ ⊆ kerC.

(only if) For disturbance decoupling it is necessary that

V := 〈A+BF | Im E〉 ⊆ kerC,

as we have seen above. Clearly, V is an (A,B)-invariant subspace of kerC,
and therefore V ⊆ V∗. Then, Im E ⊆ V implies Im E ⊆ V∗.

Corollary 3.2. A necessary condition for solvability of the disturbance
decoupling problem is CE = 0.

What are the consequences of this corollary?

3.2. Computing V∗

Next we turn to the problem of computing S∗(kerC) (or in general, of
any subspace Z).

Theorem 3.3 (V∗-algorithm). Let V0 := kerC and define, for i =
0, 1, 2, . . .

Vi+1 = {x ∈ kerC |Ax ∈ Vi + Im B}.
Then Vi+1 ⊂ Vi, and for some integer q ≤ dimV0,

Vi = V∗ for all i ≥ q.

Proof

We show that Vi+1 ⊂ Vi by induction. It is obvious that V1 ⊂ V0. Suppose
that Vi ⊂ Vi−1. Then

Vi+1 = {x ∈ kerC |Ax ∈ Vi + Im B}
⊂ {x ∈ kerC |Ax ∈ Vi−1 + Im B} = Vi.

Since Vi+1 �= Vi if and only if dimVi+1 < dimVi, the algorithm must con-
verge in q steps for some q ≤ dimV0, i.e., Vi = Vq for i ≥ q. Therefore,

Vq = {x ∈ kerC |Ax ∈ Vq + Im B}
i.e., AVq ⊂ Vq + Im B and Vq ⊂ kerC. Thus, Vq is an (A,B)-invariant
subspace in kerC, i.e., Vq ∈ S(kerC). Let V ∈ S(kerC) be arbitrary. Then,
V ⊂ V0, and if V ⊂ Vi,

V ⊂ {x ∈ kerC |Ax ∈ V + Im B}
⊂ {x ∈ kerC |Ax ∈ Vi + Im B} = Vi+1

which implies that V ⊂ Vq. Therefore, since V is arbitrary, Vq = V∗.
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However, the above procedure is not very convenient for computing V∗.
It turns out that the kernel to V∗ is much easier to compute. In the literature,
it is sometimes called the Ω∗ algorithm. We will introduce this algorithm
shortly.

The above conceptual algorithm can be concretized into matrix com-
putations form. Here we show how to transform the algorithm into matrix
computations, and in Appendix A we indicate some further numerical as-
pects to be aware of. Let {v1, v2, . . . , vqi} be a basis in Vi and define the
column stacked matrix

Vi = [v1 v2 . . . vqi ]
Let {z1, z2, . . . , zpi} be a basis of ker[Vi B]′, i.e., a maximal number of
linearly independent vectors such that

[Vi B]′zj = 0 or z′j[Vi B] = 0.

Let

Zi =

⎡
⎢⎢⎢⎣
z′1
z′2
...
z′pi

⎤
⎥⎥⎥⎦ ,

then,
Vi + Im B = Im [Vi B] = kerZi

and therefore the recursion of Theorem 3.3 can be written
Vi+1 = kerC ∩ {x |Ax ⊥ ker[Vi B]′}

= kerC ∩ {x | z′jAx = 0, j = 1, 2, . . . , pi}.
Namely,

Vi+1 = kerC ∩ ker[ZiA]
where Zi is a matrix solution of

Zi[Vi B] = 0

with a maximal number of rows, i.e, the rows of Zi are a basis for the left
null space of [Vi B]. Thus, the columns of every maximal matrix solution
Vi+1 of [

C
ZiA

]
Vi+1 = 0

(i.e. with a maximal number of columns) form a basis in Vi+1.
From the above derivation, we can summarize the Ω∗ algorithm as fol-

lows.

Ω∗-algorithm:
Denote G = Im B.

• Step 0: Ω0 = Span{C},
• Step k: Ωk = Ωk−1 + LAx(Ωk−1 ∩G⊥). Where LAx(Ω ∩G⊥) is the

span of all row vectors ωA where ω ∈ Ω ∩G⊥.
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• If there is a k∗ such that Ωk∗+1 = Ωk∗ , then

V∗ = Ω⊥
k∗.

Example 3.1. Let A =
[
0 1
2 1

]
, B =

[
0
1

]
, and C = [1 0].

Then G⊥ = span{[1 0]}, and

Ω1 = spanC + span{[1 0]A} = span{[1 0], [0 1]}.
Since Ω1 has full rank, thus V∗ = 0.

i.e., no disturbance decoupling can occur even if CE = 0.
Take, now A and B as above and C = [1,−1]. Then,

Ω1 = spanC + span{[0 0]A} = span{[1 − 1]} = Ω0.

Therefore,

V∗ = Ω⊥
1 = span{

[
1
1

]
}.

The feedback which achieves disturbance decoupling was computed previ-
ously in Example 2.2.

3.3. Disturbance decoupling, observability, and zeros

We shall now show that the idea behind disturbance decoupling by state
feedback is to introduce unobservability in the closed-loop system. We should
point out that this can only be done with full state feedback. No observer can
be used here since we do not assume any information on the disturbances.

Recall that for a pair (C,A) the unobservable subspace is defined as
ker Ω, where Ω is the observability matrix of (C,A). The unobservable sub-
space is A-invariant, in fact, it is the maximal A-invariant subspace in kerC.

Suppose that (A,B,C) is minimal. To achieve disturbance decoupling
by means of the control law u = Fx + v we seek an F that produces the
maximal A+BF -invariant subspace in kerC, i.e., we maximize with respect
to F the unobservable subspace of the pair (C,A+BF ). As a consequence,
if F ∈ F(V∗) and V∗ is nontrivial then the realization (A+BF,B,C) is no
longer minimal. Note, however, that the pair (A+BF,B) is still reachable.

Consider the special case of a SISO-system. If (A + BF,B,C) is not a
minimal realization of the scalar transfer function

C(sI −A−BF )−1B

then pole/zero cancellation takes place. Conversely, since the denominator
polynomial can be arbitrarily assigned by state feedback, any zero of the
original transfer function can be canceled. Thus, it is the presence of zeros
in the transfer function W (s) =: C(sI − A)−1B that makes V∗ nontrivial.
Hence, for a SISO-system it follows that

dimV∗ = #{zeros of W (s)}.
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Moreover, from this we conclude something about disturbance decou-
pling with stability. If W (s) has a zero in the right half plane, then distur-
bance decoupling requires that we place a pole in the right half plane, and
A + BF will not be a stability matrix. This is an example of the general
fact that presence of zeros in the right half plane makes a system difficult
to control.

In the multivariable case, treated in Chapter 4, the situation is a little
bit more delicate, but the basic idea remains the same.

We illustrate the preceding discussion with an example.

Example 3.2. Let A =
[
0 1
2 1

]
, B =

[
0
1

]
, and C = [1,−1].

In Example 2.2 we showed that kerC = {x ∈ R2 : x1 = x2} is (A,B)-
invariant. Hence, V∗ = {x ∈ R2 : x1 = x2}. Moreover, we know that F =[−1 −1

] ∈ F(V∗).
The original transfer function is

C(sI −A)−1B =
s− 1

s2 − s− 2
,

and

A+BF =
[
0 1
2 1

]
+
[
0
1

] [−1 −1
]

=
[
0 1
1 0

]

C(sI −A−BF )−1B = − s− 1
s2 − 1

= − 1
s+ 1

.

Moreover, [
C

C(A+BF )

]
=
[

1 −1
−1 1

]
,

so (C,A+BF ) is not observable.

3.4. Disturbance decoupling with eigenvalue assignment

Disturbance decoupling alone is a property of limited value. Of utmost
concern in the design of any control law is to guarantee that the closed loop
system behaves in a reasonable way. The first requirement is clearly to insure
stability of the system, but often this is not enough. A desirable asset is to
place the poles of the closed loop system at arbritrary positions; the system
can then have better damping, rise time and many other properties. This
objective is formulated in the disturbance decoupling with pole placement
(DDPP) or eigenvalue assignment. Consider the system

(3.7)
{
ẋ = Ax+Bu+Ew
y = Cx

where (A,B) is reachable. Suppose now that we want to find a feedback law
u = Fx+Gv such that

(i) y is unaffected by w
(ii) the closed-loop system is stable.
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Since the closed-loop system is

ẋ = (A+BF )x+BGv + Ew

the solution depends only on the choice of F and not onG. We showed earlier
that condition (i) is equivalent to finding a subspace V ∈ S(kerC) such that
Im E ⊆ V. Any friend F ∈ F(V) then solves problem (i). For example, we
can choose V = V∗. If we are only interested in satisfying condition (i), we
may choose V = V∗, a choice which gives the weakest possible conditions
but also fewer friends. However, a feedback law provided by a friend of V∗
may not stabilize the system, i.e., satisfy condition (ii). We shall now study
this question closer.

If we want to satisfy (i) and (ii) simultaneously we must in general choose
F from a larger class of feedback laws, i.e., choose a smaller V. It turns out
that V = R∗ works. We have

R∗ ⊆ V∗

and from Theorem 2.8 it follows that R∗ has more friends than V∗,

F(R∗) ⊇ F(V∗).

3.5. Solution of the DDPP

Theorem 3.4. Consider the system (3.7) and let r = dimR∗. Let φ and
ψ be polynomials with real coefficients such that

φ(s) = sr + φ1s
r−1 + . . . + φr

and
ψ(s) = sn−r + ψ1s

n−r−1 + . . .+ ψn−r.

Then, if

(3.8) Im E ⊆ R∗

there is an F ∈ F(R∗) satisfying condition (i) such that (A + BF ) has
characteristic polynomial

(3.9) χA+BF = φψ.

In particular, we can satisfy condition (ii) by letting φ and ψ be stable.

Proof

As pointed out above, disturbance decoupling will be achieved for any F ∈
F(R∗) provided that (3.8) is fulfilled. Therefore it only remains to prove
that there is an F ∈ F(R∗) such that (3.9) holds. To this end, express the
state space as a direct sum

(3.10) Rn = R∗ ⊕W,

where W is chosen so that

(3.11) Im B = (Im B) ∩R∗ ⊕ (Im B) ∩W.
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(Warning: such a decomposition is not valid for arbitrary choice of W. Why?)
Let {p1, . . . , pq} be a basis for Im B ∩R∗ and choose an invertible

G = [ G1 G2 ]
q k − q

such that Im BG1 = Im B ∩ R∗ and Im BG2 ⊂ W. From now on we work
with the new matrix BG replacing the B, but we still call it B. Let the basis
{p1, p2, . . . , pn} for Rn be adapted to the decomposition (3.10) in the sense
that {p1, . . . , pq, . . . , pr} is a basis for R∗.

In this basis the system has the following structure[
ẋ1

ẋ2

]
=
[
A11 A12

A21 A22

] [
x1

x2

]
+
[
B1 0
0 B2

] [
u1

u2

]
,

where x1(t) ∈ R∗ (of dimension r) and x2(t) ∈ W (of dimension n− r).
Let F ∈ F(R∗) and take u = Fx+ v. Partitioning F as

F =
[
F11 F12

F21 F22

]
yields BF =

[
B1F11 B1F12

B2F21 B2F22

]
.

Since (A+BF )R∗ ⊆ R∗, it follows that

A+BF =
[
A11 +B1F11 A12 +B1F12

0 A22 +B2F22

]
,

from where

(3.12) A21 +B2F21 = 0.

F is a friend of R∗ for any choice of F11, F12 and F22 as long as F21 satifies
(3.12).

The characteristic polynomial of A+BF is

(3.13) det(sI −A−BF ) =

det(sI −A11 −B1F11) det(sI −A22 −B2F22).

Next we show that F11, F22 can be chosen so that (3.13) becomes φ(s)ψ(s).
The closed-loop system has the structure

(3.14)
{
ẋ1 = (A11 +B1F11)x1 + (A21 +B1F12)x2 +B1v1
ẋ2 = (A22 +B2F22)x2 +B2v2.

Since R∗ is a reachability subspace, (A11, B1) is reachable, and we can choose
F11 so that

det(sI −A11 −B1F11) = φ(s).

Moreover, since (A,B) is reachable, then so is (A22, B2) (why?), and
therefore we can choose F22 so that

det(sI −A22 −B2F22) = ψ(s).

Consequently, (3.9) is fulfilled as required.
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Example 3.3. Let

A =

⎡
⎣1 2 0

0 3 0
0 2 3

⎤
⎦ , B =

⎡
⎣0 1

2 0
3 1

⎤
⎦ and C =

[
1 0 0

]
.

Can we achieve disturbance decoupling with stability if

(a) E =

⎡
⎣0

4
6

⎤
⎦ ; (b) E =

⎡
⎣0

1
5

⎤
⎦ ; (c) E =

⎡
⎣2

1
0

⎤
⎦ .

In Example 2.5 we showed that

V∗ = Im

⎡
⎣0 0
1 0
0 1

⎤
⎦ and R∗ = Im

⎡
⎣0
2
3

⎤
⎦ .

Therefore, the answers are:
(a) Yes, since Im E ⊆ R∗.
(b) We can achieve disturbance decoupling, since Im E ⊂ V∗, but, per-

haps not stability since Im E � R∗.
(c) No, not even disturbance decoupling, since Im E � V∗.

3.6. Is it necessary that Im E ⊂ R∗?

The somewhat unclear answer in case (b) above motivates further study of
the following question. When can we achieve stability with an

F ∈ F(V∗) ⊆ F(R∗)?

Let V∗/R∗ be an arbitrary subspace such that

V∗ = R∗ ⊕ V∗/R∗.

Abstractly, V∗/R∗ is a quotient space, hence the somewhat cumbersome no-
tation. Let {p1, . . . , pn} be a basis in Rn that is adapted to the decomposition

Rn = R∗ ⊕ V∗/R∗ ⊕W
in the sense that {p1, . . . , pr} is a basis in R∗, {pr+1, . . . , pν} in V∗/R∗ and
{pν+1, . . . , pn} in W, and for simplicity, the first q columns of B are a basis
for Im B ∩ R∗. This decomposition is analogous to the one in (3.10) and
(3.11).

Then the system {
ẋ = Ax+Bu
y = Cx

can be rewritten in this basis as

(3.15)

⎡
⎣ẋ1

ẋ2

ẋ3

⎤
⎦ =

⎡
⎣A11 A12 A13

A21 A22 A23

A31 A32 A33

⎤
⎦
⎡
⎣x1

x2

x3

⎤
⎦+

⎡
⎣B1 0

0 0
0 B3

⎤
⎦[u1

u2

]

y =
[
0 0 C3

]
x,
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where x1(t) ∈ R∗, x2(t) ∈ V∗/R∗ and x3(t) ∈ W and the columns of B are
partitioned according to (3.11). The zero blocks in B and C are consequences
of

Im

⎡
⎣B1

0
0

⎤
⎦ = Im B ∩ V∗ ⊆ R∗, Im

⎡
⎣ 0

0
B3

⎤
⎦ = Im B ∩W ⊆ W,

and V∗ ⊆ kerC.
Partitioning F ∈ F(V∗) as

F =
[
F11 F12 F13

F21 F22 F23

]
we have

BF =

⎡
⎣B1F11 B1F12 B1F13

0 0 0
B3F21 B3F22 B3F23

⎤
⎦ .

Now, since we also have F ∈ F(R∗), (A+BF )R∗ ⊆ R∗, and therefore

(A+BF )

⎡
⎣x1

0
0

⎤
⎦ =

⎡
⎣(A11 +B1F11)x1

A21x1

(A31 +B3F21)x1

⎤
⎦ =

⎡
⎣∗0
0

⎤
⎦

for all x1. Consequently, A21 = 0 and A31 +B3F21 = 0, fixing F21.
Likewise, the invariance (A+BF )V∗ ⊆ V∗ implies that

(A+BF )

⎡
⎣ 0
x2

0

⎤
⎦ =

⎡
⎣(A12 +B1F12)x2

A22x2

(A32 +B3F22)x2

⎤
⎦ =

⎡
⎣ ∗
∗∗
0

⎤
⎦

for all x2 so that A32 +B3F22 = 0, determining F22.
Thus,

A+BF =

⎡
⎣A11 +B1F11 A12 +B1F12 A13 +B1F13

0 A22 A23

0 0 A33 +B3F23

⎤
⎦

with the characteristic polynomial

φ1(s)φ2(s)φ3(s) =

det(sI−A11−B1F11) det(sI−A22) det(sI−A33−B3F23).
Since (A,B) is reachable, (A33, B3) is reachable, and consequently φ3(s)
can be chosen arbitrarily by a suitable choice of F23. Moreover, since R∗ is
a reachability subspace, φ1(s) can also be chosen arbitrarily by a suitable
choice of F11. However, we cannot affect the eigenvalues of A22.

Hence, we can stabilize the system with an F ∈ F(V∗) only if A22 is
stable.

It turns out that the eigenvalues A22 are the zeros of the multivariable
transfer function W (s) = C(sI−A)−1B, in a sense to be defined in the next
chapter.




