
CHAPTER 4

Zeros and zero dynamics

4.1. Zero dynamics for SISO systems
Consider a linear system defined by a strictly proper scalar transfer

function that does not have any common zero and pole:

g(s) = α
p(s)

d(s)
= α

sm + p1s
m−1 + · · ·+ pm−1s+ pm

sn + d1sn−1 + · · ·+ dn−1s+ dn
.

The roots of the polynomial p(s) are called transmission zeros of the system.
n−m is called the relative degree of the transfer function.

A minimum (controllable and observable) state space realization (A, b, c)
is

(4.1) ẋ =


0 1 0 · · · 0
...

...
...

...
...

0 0 0 · · · 1
−dn −dn−1 −dn−2 · · · −d1

x+


0
...
0
α

u
y = [pm · · · p1 1 0 · · · 0]x

Now let us consider the following problem:

Problem 4.1. Find, if possible, a control u and initial conditions x0
such that y(t) = 0 ∀t ≥ 0.

If the problem has a solution, we can define accordingly

Definition 4.1. The dynamics of the system (4.1) restricted to the set
of initial conditions defined in Problem 4.1 (if the set is well defined) is
called the zero dynamics.

As we will find out, the name “zero dynamics” is due to its relation to
output zeroing and its relation to transmission zeros.

Naturally, in order to keep y = 0, we just need to find initial conditions
and a feedback control such that

y(i) = 0, i = 0, 1, . . . .

When we compute y(i), as an implication of the relative degree, we see
by straightforward calculation that for (4.1)

(4.2) cAib = 0, for i = 0, 1, . . . , n−m− 2, cAn−m−1b ̸= 0.
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32 4. ZEROS AND ZERO DYNAMICS

In other words, we have
y(i−1) = cAi−1x, i = 1, . . . , n−m

y(n−m) = cAn−mx+ cAn−m−1bu

Remark 4.1. The property (4.2) is coordinate-independent, since the
relative degree is obviously so. We leave the proof as an exercise.

The implication (4.2) leads to the fact that the rows
cAi−1, i = 1, . . . , n−m

are linearly independent. This can easily be shown by contradiction. We
leave this as an exercise.

We now do a coordinate change by letting

(4.3) ξi := cAi−1x i = 1, . . . , n−m
zi := xi i = 1, . . . ,m,

where one can easily verify that the z′is are linearly independent from the
ξ′is. Then the system can be written as

(4.4)

ż = Nz + Pξ1
ξ̇1 = ξ2

...
ξ̇n−m−1 = ξn−m

ξ̇n−m = Rz + Sξ + αu
y = ξ1

where

(4.5) N =


0 1 0 · · · 0
...

...
...

...
...

0 0 0
... 1

−pm −pm−1 · · · · · · −p1

 P =


0
...
0
1


and

ξ = (ξ1, · · · , ξn−m)T .

(4.4) is called the normal form of (4.1).
In order to keep y(t) = 0, we must have ξ1 = ξ2 = · · · = ξn−m = 0 and

u =
1

α
(−Rz − Sξ).

So the zero dynamics is defined on the subspace
Z∗ := {x : cAix = 0, i = 0, . . . , n−m− 1}

and represented by
ż = Nz.

The eigenvalues of N are zeros of g(s).
Question: What is V∗ for (4.1)?
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4.2. Zero dynamics of MIMO systems
In this section we discuss zeros and zero dynamics of a multivariable

system

(4.6) ẋ = Ax+Bu
y = Cx,

where (A,B,C) is minimal and A is n × n. From now we always assume
that both B and C have full rank. For the time being we assume that the
number of inputs and the number of the outputs are the same (a square
system), namely B is n×m and C is m× n. Correspondingly we also have
the frequency domain representation of (4.6) as

G(s) = C(sI −A)−1B.

Unfortunately we do not have a straightforward way to extend the concept
of transmission zero for a SISO system to the MIMO case. So instead we
first study the output zeroing problem:

Problem 4.2. Find, if possible, a control u and initial conditions x0
such that y(t) = 0 ∀t ≥ 0.

Similarly we define:
Definition 4.2. The dynamics of the system (4.6) restricted to the set

of initial conditions defined in Problem 4.2 (if the set is well defined) is
called the zero dynamics.

In the SISO case, we used the normal form to solve the problem, where
the relative degree played an important role. Thus we first generalize this
concept to the MIMO case.

Definition 4.3. System (4.6) is said to have relative degree (r1, . . . , rm)
if for i = 1, . . . ,m

ciA
jB = 0, ∀j = 0, . . . , ri − 2

ciA
ri−1B ̸= 0,

and the matrix

(4.7) L :=

 c1A
r1−1B
...

cmA
rm−1B


is nonsingular.

Similar to the SISO case, we do a coordinate change:
ξij = ciA

j−1x, i = 1, . . . ,m and j = 1, . . . , ri,

and complete the coordinates by choosing
zi = pix, such that piB = 0, i = 1, . . . , n− (r1 + · · ·+ rm).

Question: why can we find such p′is that piB = 0?
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Now we can also derive a normal form as

(4.8)

ż = Nz + Pξ

ξ̇i1 = ξi2
...

ξ̇iri−1 = ξiri
ξ̇iri = Riz + Siξ + ciA

ri−1Bu
yi = ξi1, i = 1, . . . ,m

where
ξ := (ξ11 , · · · , ξ1r1 , · · · , ξ

m
1 , · · · , ξmrm)

T .

In order to keep y(t) = 0, we must have ξ = 0 and u = L−1(−Rz − Sξ),
where

(4.9) R =

R1
...
Rm

 , S =

S1...
Sm

 .
Theorem 4.1. If system (4.6) has relative degree (r1, . . . , rm), then the

zero dynamics is defined on the subspace
Z∗ := {x : ciA

j−1x = 0, i = 1, . . . ,m and j = 1, . . . , ri}.

The zero dynamics under the normal form (4.8) is represented by
ż = Nz.

Definition 4.4. The eigenvalues of N are called the transmission zeros
of system (4.6).

We can define a feedback transformation
u = Fx+ v = L−1(−Rz − Sξ) + v.

A straight calculation shows V∗ in this case coincides with the output zeroing
subspace:

ξ = 0.

Now the question is how we interpret the transmission zeros in the fre-
quency domain.

Proposition 4.2. Let

(4.10) PΣ(s) :=

[
s0I −A B
−C 0

]
.

A complex number s0 is a transmission zero of the system (4.6) if and only
if

rank PΣ(s) < n+m.

Remark 4.2. The matrix in (4.10) is called the system (Rosenbrock)
matrix of (A,B,C).
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Proof
The normal form (4.8) is obtained from (4.6) via a coordinate transformation
x = Qx̂ where x̂ = (zT , ξT )T and Q is defined accordingly. In the normal
form, where Â = Q−1AQ, F̂ = FQ, B̂ = Q−1B, Ĉ = CQ, we have

Â+ B̂F̂ =

[
N P
0 H

]
,

Ĉ =
[
0 C1

]
, B̂ =

[
0
B1

]
where H and C1 and B1 are determined by the normal form and the triple
(H, B1, C1) is both controllable and observable. Because of the special
forms of B̂ and Ĉ, it is not so difficult to see that

rank

[
s0I − Â− B̂F̂ B̂

−Ĉ 0

]
< n+m

if and only if s0 is an eigenvalue of N , namely a transmission zero. Then the
proposition is proven since[

s0I − Â− B̂F̂ B̂

−Ĉ 0

]
=

[
Q−1 0
0 I

] [
s0I −A B
−C 0

] [
I 0

−F I

] [
Q 0
0 I

]
.

With the above proposition, we can easily define transmission zeros even
for non-square systems.

Now suppose system (4.6) has m inputs and p outputs, then

Definition 4.5. A complex number s0 is called a transmission zero of
the system (4.6) if

(4.11) rank

[
s0I −A B
−C 0

]
< n+min(m, p).

Remark 4.3. In the multivariable case a complex number can be both
a zero and a pole (eigenvalue of A). If (A,B,C) is not minimal, the above
definition may include so-called input/output decoupling zeros. In general,
n +min(m, p) should be replaced by the highest possible rank of the system
matrix.

Now we give an alternative characterization of transmission zeros, which
was used in some literature. Especially, this characterization will help us
understand some of the historic results on the output regulation problem,
which will be studied in Chapter 7. For this purpose, we need to introduce
the following lemma.

Lemma 4.3. [16] For any m× n polynomial matrix P (s) there exists a
sequence of elementary (row and column) operations that transforms P (s)
to

P̂ (s) = diagm×n(Ψ1(s),Ψ2(s), . . . ,Ψr(s), 0, . . . , 0),
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where Ψ1,Ψ2, . . . are monic non-zero polynomials satisfying Ψ1 | Ψ2 | Ψ3 · · · ,
namely each Ψi divides the next one.

These non-zero polynomials are called the (non-trivial) invariant factors
of P (s).

Definition 4.6. The non-trivial invariant factors of P (s) are called the
transmission polynomials of the system. The product of the transmission
polynomials is called the zero polynomial.

Lemma 4.4. s0 is a transmission zero if and only if it is a root of the
zero polynomial.

The following result clarifies why “transmission” was in the name.
Lemma 4.5. Suppose s0 is a transmission zero, namely there exist x0

and u0 such that
PΣ(s0)

[
x0
u0

]
= 0.

Let u(t) = −es0tu0. Then the output resulting from the initial state x0 and
input u is zero, just as in the square case.

The proof is left as an exercise to the reader.
Theorem 4.6. Suppose s0 is not a pole. Then s0 is a transmission zero of

(4.6) if and only if rank W (s0) < min(m, p), where W (s) = C(sI −A)−1B.

Proof
Consider

(4.12)
[

I 0
C(sI −A)−1 I

] [
sI −A B
−C 0

]
=

[
sI −A B

0 W (s)

]
.

Since the first matrix in (4.12) is nonsingular at all s that are not poles, the
Rosenbrock matrix drops rank at s0 if and only if W (s) drops rank at s0.

4.3. Zeros and system inversion
We now summarize the discussions in the previous section.
Theorem 4.7. Consider system (4.6) and suppose that dim(Im B) = m.

Then the transmission zeros of the system are the eigenvalues of (A+BF )|V∗,
namely, those eigenvalues of A+BF that are invariant over the class F(V∗)
of friends F of V∗. In particular, dimV∗/R∗ is equal to the number of
transmission zeros.

In the case where the system is square and has a relative degree (r1, . . . , rm),
we see that
(4.13) V∗ ∩ Im B = 0.

Thus R = 0.
In general (including the non-square case), condition (4.13) together with

the condition that B has full column rank are the conditions for the system



4.3. ZEROS AND SYSTEM INVERSION 37

being invertible, namely, from a given initial point x0, any two controls u1
and u2 that produce the same output are necessarily equal. These are also
the conditions that guarantee the uniqueness of the zero dynamics.

Proof
Partition the state space as in (3.15), and consider[

sI −A B
−C 0

] [
I 0

−F I

]
=

[
sI −A−BF B

−C 0

]

=


sI−P11−B1F11 −P12−B1F12 −P13−B1F13 B1 0

0 sI−P22 −P23 0 0
0 0 sI−P33−B3F23 0 B3

0 0 −C3 0 0



∼


sI−P11−B1F11 B1 −P12−B1F12 −P13−B1F13 0

0 0 sI−P22 −P23 0
0 0 0 sI−P33−B3F23 B3

0 0 0 −C3 0

 .
Since R∗ is a reachability subspace, (P11 + B1F11, B1) is reachable and[

sI − P11 −B1F11 B1

]
has full rank for all s ∈ C.

If we can show that

(4.14)
[
sI−P33−B3F23 B3

−C3 0

]
has full rank for all s ∈ C,

then the Rosenbrock matrix drops rank for exactly those s0 for which(
sI − P22

)
drops rank, i.e,

{zeros} = {eigenvalues of P22}.
Thus, it remains to show the claim in (4.14). Since[

sI−P33−B3F23 B3

−C3 0

]
=

[
sI−P33 B3

−C3 0

] [
I 0

−F23 I

]
it is enough to show that

Q(s) :=

[
sI−P33 B3

−C3 0

]
has full rank for all s ∈ C. To this end, suppose the contrary. Then for some
s0 ∈ C there is a nonzero vector

[
x0
u0

]
such that Q(s0)

[
x0
u0

]
= 0, i.e.,{

P33x0 = s0x0 −B3u0
C3x0 = 0.

The vector x0 is nonzero, since x0 = 0 would imply B3u0 = 0 and contradict
the assumption that

B =

B1 0
0 0
0 B3


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has linearly independent columns. Define the subspace

K := Im

 0
0
x0

 ⊆ Rn.

Since C3x0 = 0, it follows that K ⊆ kerC. Moreover, V∗ ⊕ K is (A,B)-
invariant. To see this, form

(4.15) A

 0
0
x0

 =

P13x0
P23x0
P33x0

 =

P13x0
P23x0
0

+ s0

 0
0
x0

−

 0
0
B3

u0.
The three terms in the right hand side of (4.15) belong to V∗, K and Im B,
respectively. Hence, V∗ ⊕K is an (A,B)-invariant subspace in kerC, which
contradicts the maximality of V∗.

4.4. An illustration of zero dynamics: high gain control1

Zeros are system invariants, in the sense that coordinate transforma-
tions or feedback transformations do not alter their location. In some cases
this can have a detrimental effect on the behavior of a system, if for exam-
ple the input-output gain of the system drops substantially for frequencies
associated with a zero while we request “good controllability” near those
same frequencies. Zeros in the right half plane are especially nasty. Systems
with this type of zeros are called non-minimum phase, because, in the scalar
IO case, there exist systems with the same gain-frequency plot but smaller
phase. When a system has non-minimum phase zeros, high-gain feedback
(e.g. matrix F with large norm) cannot be used to stabilize the system,
since it can be shown that some of the poles of the feedback system tend to
its zeros as ∥F∥ increases. This is a similar phenomenon as that what occurs
with root-locus diagrams. Consequently, the selection of feedback matrices
in the non-minimum phase case is very delicate, since feedback should be
high enough to have some effect but simultaneously low enough to avoid
instabilities. Finally, it can be shown that the sensitivity of a non-minimum
phase system to disturbances acting at the input of the plant is severely lim-
ited both when the open-loop plant has unstable poles and non-minimum
phase zeros. More on this can be read in [5].

In the rest of the section, we use the geometric interpretation of zeros,
the zero dynamics, to explain the effects of high gain controls. For the sake
of simplicity, we consider a SISO system:

(4.16) g(s) = α
p(s)

d(s)
= α

sm + p1s
m−1 + · · ·+ pm−1s+ pm

sn + d1sn−1 + · · ·+ dn−1s+ dn
.

1The topics discussed in the section are more advanced
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It is well known that if the system is minimum phase, then the following
output feedback control

u = −kn−mq(
s

k
)y

stabilizes the system when k > 0 is sufficiently large, where q(s) = q0+ · · ·+
qn−m−1s

n−m−1 is any (n−m− 1)-order polynomial such that sn−m + q(s)
is Hurwitz.

It is easy to see that in the normal form, the closed-loop system becomes

(4.17)

ż = Nz + Pξ1
ξ̇1 = ξ2

...
ξ̇n−m−1 = ξn−m

ξ̇n−m = Rz + Sξ −
∑n−m−1

i=0 qik
n−m−iξi+1

y = ξ1,

where N and P are defined in (4.5). If we let ϵ := 1
k and ξ̃i := ϵi−1ξi, then

we have

(4.18)

ż = Nz + P ξ̃1

ϵ
˙̃
ξ1 = ξ̃2

...
ϵ
˙̃
ξn−m−1 = ξ̃n−m

ϵ
˙̃
ξn−m = ϵR(ϵ)z + ϵS(ϵ)ξ̃ −

∑n−m−1
i=0 qiξ̃i+1.

Then by singular perturbation arguments, we have ξ̃ = O(ϵ)z, as t → ∞
and k is sufficiently large, where O(0) = 0. In the first equation, we then
have

ż = Nz + PO1(ϵ)z.

If N is stable (minimum phase condition), then the above subsystem is also
stable if ϵ is small enough!

Another example is the so-called cheap control problem . Here the idea
is that the cost of control is “cheap”. For a minimum realization of (4.16)

(4.19) ẋ = Ax+ bu
y = cx,

the cheap control problem is characterized by the presence of ϵ in the cost
functional

(4.20) J =
1

2

∫ ∞

0
(∥cx∥2 + ϵ2∥u∥2)dt

where ϵ is a small positive constant.
As is well known, the optimal control of (4.20) is a linear feedback control

u = Fϵx where
Fϵ = − 1

ϵ2
BTPϵ
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and Pϵ is the positive semidefinite solution of the Riccati equation

(4.21) ATPϵ + PϵA+ cT c =
1

ϵ2
Pϵbb

TPϵ.

By the classical results of linear optimal control , we know the closed-loop
system is stable. Now an interesting question is, what happens to the optimal
trajectories if we let ϵ→ 0?

It turns out that in order to have the trajectories stay bounded, it is
necessary and sufficient to assume that (4.16) has relative degree 1 (m =
n−1) and no transmission zeros on the imaginary axis. It is not so difficult to
see [10] (although we will not derive it here) that under these conditions as
ϵ→ 0 the optimal trajectories tend to the solutions of the following optimal
control problem:

min
1

2

∫ ∞

0
∥v∥2dt

subject to ż = Nz + Pv being asymptotically stable.
When N does not have any eigenvalue on the imaginary axis, the optimal

control problem is well posed.
We can show that the optimal solution will lead to the zero dynamics

equation if the original system is minimum phase; otherwise it will lead to
the following system

ż = N1z,

where the eigenvalues of N1 are either stable transmission zeros, or the
mirror images of unstable transmission zeros.


