
CHAPTER 6

Input-output behavior

6.1. State observation

Consider a MIMO system

(6.1) ẋ = Ax+Bu
y = Cx.

and the problem of reconstructing the state x from the output y.
As we have learned from a basic control course, one obvious way to

estimate the state is to use an error correction on the system equation:

(6.2) ż = Az +Bu+ L(Cz − y),

where L is designable. The fact that the same A and C matrices are used is
due to that if the observation error Cz− y is identically zero, then z should
x.

Let e := z − x be the difference between the estimated and actual state
trajectory, then

ė = (A+ LC)e.
Naturally the difference will tend to zero if and only if all eigenvalues of
(A + LC) have negative real parts. Obviously we can find an L such that
(A + LC) is stable if and only if the pair (C,A) is detectable, namely, all
eigenvalues of A restricted to the unobservable subspace must have negative
real part.

It is well known that for a linear system, one can separate the designs
for a stabilizing controller and for a state observer. This principle can be
stated as follows.

Proposition 6.1 (Separation principle). Suppose (6.1) is stabilizable
and detectable, then for any F and L such that A + BF and A + LC are
stable, the closed-loop system resulting from using u = Fz and the observer

(6.3) ẋ = Ax+BFz
ż = (A+BF )z + LC(z − x)

is also stable.

Proof

Denote

J :=
[
A BF

−LC A+BF + LC

]
,
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46 6. INPUT-OUTPUT BEHAVIOR

then by a similarity transformation we have[
I 0
−I I

]
J

[
I 0
I I

]
=
[
A+BF BF

0 A+ LC

]
.

Thus, J is a stable matrix.

6.2. Output tracking input

In this section we review some classical results on asymptotic input track-
ing. Consider a stable, controllable and observable SISO linear system:

ẋ = Ax+ bu(6.4)
y = cx

where x ∈ Rn and σ(A) ∈ C− .
We will consider the case when the input u is generated by the following

exogenous system:

ẇ = Γw(6.5)
u = qw

where w ∈ Rm and σ(Γ) ∈ C̄+. This exo-system can generally have a block
diagonal Jordan realization

q =
(
q1 q2 . . . qM

)
Γ = diag(Γ1,Γ2, . . . ,ΓM )

(6.6)

where each qi =
(

1 0 · · · 0
)

is a first unit vector of length dim(Γi)
and the Jordan blocks correspond to polynomial, exponential, and sinusoidal
functions. The output of the exo-system becomes

u(t) =
M∑
i=1

qie
Γitw0i = qeΓtw0.

Such exo-systems can generate, for example, step functions, ramp functions,
polynomials, exponentials, sinusoidals, and combinations of such functions.

Proposition 6.2. Suppose A is a stable matrix, then all trajectories of
(x(t), w(t)) tend asymptotically to the invariant subspace S := {(x,w) : x =
Πw}, where Π is the solution of

AΠ − ΠΓ = −bq.
On the invariant subspace, we have

y(t) = cΠw(t).

Proof

We will establish that there exists a matrix Π so that the set

S = {(x,w) : x = Πw}
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is invariant under the action of the linear system in the following sense. Let

u = qw

then in order to show S is invariant we only need to show ẋ = Πẇ. Namely,

(6.7) ΠΓw = AΠw + bqw

which gives us the Lyapunov equation

(6.8) ΠΓ −AΠ = bq.

Now the eigenvalues of Γ are in the right half plane and the eigenvalues of
−A are in the strict right half plane and hence no sum of eigenvalues is zero.
Thus there exists a unique solution Π to the equation.

Now let e = x − Πw, one can easily show that e → 0 as t → ∞ by the
assumption that A is a stable matrix.

Using the matrix Π we have that the output of the linear system in the
steady-state can be represented as

y = cΠw.

Proposition 6.3. Let the system

ẇ = Γw, u = qw

be observable and no eigenvalue of Γ is a transmission zero of (6.4). Then
the system on the invariant subspace

ẇ = Γw, y = cΠw

is also observable.

Proof

We first need to establish that under the hypotheses, the composite system(
ẋ
ẇ

)
=

(
A bq
0 Γ

)(
x
w

)
(6.9)

y = cx

is observable. Methods for proving similar results can be found, for example,
in [4].

Define

H(s) :=

⎛
⎝ sI −A −bq

0 sI − Γ
c 0

⎞
⎠ .

By Hautus test we know that the system is observable if and only if

rank(H(s)) = n+m ∀s.
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If s is not an eigenvalue of Γ, it is easy to see that rank(H(s)) = n + m
since (c,A) is observable. Now suppose s is an eigenvalue of Γ,

H(s) =

⎛
⎝ sI −A b 0

0 0 Im
c 0 0

⎞
⎠
⎛
⎝ In 0

0 −q
0 sI − Γ

⎞
⎠ .

If s is not a transmission zero of (6.4), then and only then the first matrix
on the right-hand side has rank n+1+m. The second has rank n+m since
(q,Γ) is observable. By Sylvester’s inequality, we have

rank(H(s)) ≥ n+ 1 +m+ n+m− (n +m+ 1) = n+m.

Therefore rank(H(s)) = n+m.
Now we do a coordinate change x̄ := x− Πw. Then (6.9) becomes(

˙̄x
ẇ

)
=

(
A 0
0 Γ

)(
x̄
w

)
y = cx̄+ cΠw

It is straight forward to see that(
(c, cΠ),

(
A 0
0 Γ

))

is observable implies (cΠ,Γ) is so too.

We will now discuss how Propositions 6.2 and 6.3 can be used to deter-
mine an appropriate output in order to track the input exactly in stationar-
ity. It follows that the output tracks the input if the vector c is chosen such
that

(cΠ − q)eΓtw0 = 0(6.10)

where w0 is the initial state of (6.5) that generates the input. This is clearly
the case if cΠ = q. If Π, for example, has full column rank, then it is possible
to design an output c for perfect input tracking in stationarity. We will show
below that this is the case if (A, b) is controllable, (q,Γ) is observable and
dim(A) ≥ dim(Γ).

In some way one may view this problem as a dual one to the output reg-
ulation problem discussed in [7]. In this section, we discuss some necessary
and sufficient conditions.

Theorem 6.4. Suppose (q,Γ) is observable and (A, b) controllable. Then
a necessary and sufficient condition for the existence of c, such that cΠ = q,
is that the dimension of A is greater than or equal to that of Γ.
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Proof

We can rewrite ẋ = Ax+ bu in the canonical form:

ẋ1 = x2

...(6.11)
ẋn−1 = xn

ẋn = −
n∑

i=1

aixi + ku,

where k �= 0 and ρ(s) := sn +
∑n

i=1 ais
i−1 is Hurwitz. In the steady state,

by Proposition 6.2 we have
x1 = π1w,

where π1 is the first row of Π. Since xi = π1Γi−1w, for i = 1, . . . , n, we have

(6.12) Π =

⎛
⎜⎜⎜⎝

π1

π1Γ
...

π1Γn−1

⎞
⎟⎟⎟⎠ .

Then from the last equation of (6.11) we have

π1Γn = −
n∑

i=1

aiπ1Γi−1 + kq.

Since by assumption Γ does not have any eigenvalue in the open left-half
plane, we have

(6.13) π1 = kqρ(Γ)−1.

If there exists a c, such that

q = cΠ =
n∑

i=1

ciπ1Γi−1,

then

q = kqρ(Γ)−1
n∑

i=1

ciΓi−1,

or equivalently,

q

(
I − kρ(Γ)−1

n∑
i=1

ciΓi−1

)
= 0.

Denote Δ = I − kρ(Γ)−1
∑n

i=1 ciΓ
i−1. It is easy to show that

Δ =

(
Γn +

n∑
i=1

(ai − kci)Γi−1

)
ρ(Γ)−1
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thus qΔ = 0 if and only if

(6.14) qΓn +
n∑

i=1

(ai − kci)qΓi−1 = 0.

Since (q,Γ) is observable, (6.14) has a solution if and only if n is greater
than or equal to the dimension of Γ.

Corollary 6.5. If dim(A) ≥ dim(Γ), then Π has full column rank, and
thus there exists c, such that,

cΠ = q.

Moreover, if dim(A) = dim(Γ), then such c is unique.

Proof

It follows from (6.12), (6.13), (6.14), and observability of the exo-system
(6.5). Indeed,

Π =

⎛
⎜⎜⎜⎝

π1

π1Γ
...

π1Γn−1

⎞
⎟⎟⎟⎠ = k

⎛
⎜⎜⎜⎝

q
qΓ
...

qΓn−1

⎞
⎟⎟⎟⎠ ρ(Γ)−1

which has full rank since (q,Γ) is observable.

Corollary 6.6. Suppose dim(A) = n ≥ dim(Γ) = m, then there exists
c such that cΠ = q and the resulting system (6.9) is observable and (6.4)
does not have any transmission zero that is also an eigenvalue of Γ.

Proof

Consider the canonical form (6.11). Suppose the characteristic polynomial
for Γ is ρΓ(s) = sm+

∑m
i=1 γis

i−1. It follows from (6.14) and Cayley-Hamilton
that

ci =
1
k
(ai − γ̄i) i = 1, . . . , n,

where γ̄i = 0 ∀i < n−m+ 1 and γ̄i = γi−n+m otherwise, is a solution such
that cΠ = q. It then follows from the fact that A and Γ do not share any
eigenvalue, that no eigenvalue s0 of A or Γ is a root of

n∑
i=1

cis
i−1
0 =

1
k

n∑
i=1

ais
i−1
0 − sn−m

0

k

m∑
i=1

γis
i−1
0 .

Indeed, if s0 is for example a root of the characteristic polynomial of A, the
above expression reduces to

−s
n−m
0

k
ρΓ(s0),

which must be nonzero. Thus, no transmission zero of the corresponding
(6.4) is an eigenvalue of Γ and the pair (c,A) is observable. From the proof
of Proposition 6.3 we derive that (6.9) is observable.
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We have shown under the assumptions of Corollary 6.5 that the input u
can be reconstructed simply as

û = cx,

where, e.g. c = qΠ† († denotes pseudo inverse). The tracking error satisfies
(here x̄ = x− Πw)

ū := u− û = cx− qw = cx̄+ cΠw − qw = cx̄

Hence, the error dynamics in this case becomes

˙̄x = Ax̄

ū = cx̄

which has its rate of convergence limited by the eigenvalues of A.

Example 6.1. We consider a car-like base and a manipulator mounted
on it. By using the homogeneous representation of rigid body motions, we
can easily compute the position of the end-effector, relative to the base, rB

A ,
and thus the kinematic model as

ẋA = f(xA, u).

For the car, we use the model we have studied in Chapter 1:

α̇f = a11αf + r + δ̇f

ψ̇ = r

ṙ = a21αf + a22r + b21δf + d(t)
y1 = αf

y2 = ψ

The problem we want to study is that by measuring the orientation (ψ)
and yaw rate (r), is it possible to recover d(t) at least in some cases? Since
this information shall be useful to know for the control of the manipulator.
In other words, can we find a c = (0 c2 c3) such that y = d in stationarity?

We leave this as an exercise.

6.3. The partial stochastic realization problem

In this section, we will present the results in discrete time. Although one
can easily translate these results into continuous time, it makes more sense
to discuss them in discrete time, judging by their potential applications.

Given a partial covariance sequence

(6.15) {c0, c1, c2, . . . , cn},
consider the problem to determine a stationary stochastic model

(6.16) (Σ)

{
x(t+ 1) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)
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such that
E{y(t+ k)y(t)} = ck k = 0, 1, 2, . . . , n.

Since clearly c0 > 0, it is no restriction setting c0 = 1. It just amounts to
scaling the process.

This is an important problem in systems theory, appearing in many
applications, among them speech processing and spectral estimation. A very
popular solution of this problem is the so called maximum entropy solution,
which we shall describe next.

Let us first return to the Schur parameters. It was shown by Schur at
the beginning of the century that there is a one-one correspondence between
infinite covariance sequences

{c0, c1, c2, c3, . . . }
and infinite sequences

{γ0, γ1, γ2, . . . }
such that |γt| < 1 for all t ≥ 0, under which the partial sequence {c0, c1, c2, . . . , cm}
is uniquely determined by the partial sequence {γ0, γ1, . . . , γm} and vice
versa, for each m ≥ 0. In particular, (6.15) defines

{γ0, γ1, . . . , γn−1}
uniquely via the Levinson equation. Consequently, each extension

{γn, γn+1, γn+2, . . . }
of Schur parameters with the property |γt| < 1 corresponds to an extension
of the covariance sequence for which the Toeplitz matrix⎡

⎢⎢⎢⎣
c0 c1 c2 c3 · · ·
c1 c0 c1 c2 · · ·
c2 c1 c0 c1 · · ·
...

...
...

...

⎤
⎥⎥⎥⎦ > 0.

However, this covariance sequence may not correspond to a rational spectral
density and thus to a finite-dimensional stochastic model Σ.

One choice that does is

γn = γn+1 = γn+2 = · · · = 0,

which yields precisely the maximum entropy solution. In fact, from the
Levinson algorithm we have

ϕn+k(z) = zkϕn(z)

so that, for t ≥ n,

ϕtk =

{
ϕnk for k = 0, 1, 2, . . . , n
0 for k > 0

Hence,

y(t) = −ϕn1y(t− 1) − ϕn2y(t− 2) − · · · − ϕnny(t− n) +
√
rnu(t).
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Introducing the state process

x(t) =

⎡
⎢⎢⎢⎣

y(t− n)
y(t− n+ 1)

...
y(t− 1)

⎤
⎥⎥⎥⎦

we obtain a state space representation Σ with

A =

⎡
⎢⎢⎢⎢⎣

0 1 0 · · · 0
0 0 1 · · · 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 · · · 1

−ϕnn −ϕn,n−1 −ϕn,n−2 · · · −ϕn1

⎤
⎥⎥⎥⎥⎦ B =

⎡
⎢⎢⎢⎣

0
0
...√
rn

⎤
⎥⎥⎥⎦

C =
[−ϕnn −ϕn,n−1 −ϕn,n−2 · · · −ϕn1

]
D =

√
rn

which is on reachable canonical form. Hence,

W (z) = C(zI −A)−1B +D

=
zn − ϕn(z)
ϕn(z)

√
rn +

√
rn

=
√
rnz

n

ϕn(z)

yielding the spectral density

Φ(z) = W (z)W (1/z) =
rn

ϕn(z)ϕn(1/z)
,

i.e., the maximum entropy solution has no zeros.
In many applications, such as speech processing, we would like to have

zeros. In fact, we may want to have a particular set of zeros. Can we achieve
this? Schur-parameter extension will in general not do since we require the
system Σ to be finite-dimensional of dimension at most n.

Very recently we have proved the following.

Theorem 6.7. To each stable polynomial

σ(z) = zn + σ1z
n−1 + · · · + σn

there is one and only one stable polynomial

a(z) = a0z
n + a1z

n−1 + · · · + an a0 > 0

such that a system Σ with transfer function

W (z) =
σ(z)
a(z)

satisfies
E{y(t+ k)y(t)} = ck k = 0, 1, 2, . . . .n.
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This theorem gives a complete parameterization of the partial stochastic
realization problem in terms of zeros. The zeros of

Φ(z) =
σ(z)σ(1/z)
a(z)a(1/z)

can be chosen arbitrarily (subject to the obvious limitations due to the fact
that Φ is a spectral density). Moreover there is a unique partial stochastic
realization to each admissible zero structure.




