
Mathematical Systems Theory: Advanced Course

Exercise Session 1

1 Linear algebra

Let X and Y be linear vector spaces over R, and A is a map from X to Y.

• Subspace S in X : S ⊂ X and

α1s1 + α2s2 ∈ S,∀α1, α2 ∈ R, and ∀s1, s2 ∈ S.

For Rn, subspaces ⇔ hyperplanes passing through origin.

• Image space

Im A := {y ∈ Y : y = Ax for some x ∈ X} .

• Rank of A
rankA := dim(Im A),

where dim(Im A) is the number of linearly independent vectors in the
subspace Im A.

• Kernel space (Null space)

ker A := {x ∈ X : Ax = 0} .

• Preimage of W(⊂ Y) under the map A

AIW := {x ∈ X : Ax ∈ W} .

Example

For the following matrix A and W, obtain Im A, rankA, ker A and AIW,

A :=

⎡
⎢⎣ 1 2 1

1 0 −1
0 1 1

⎤
⎥⎦ , W = span

⎧⎪⎨
⎪⎩
⎡
⎢⎣ 1

1
0

⎤
⎥⎦
⎫⎪⎬
⎪⎭ .
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Since Ax is calculated as

Ax =

⎡
⎢⎣ 1 2 1

1 0 −1
0 1 1

⎤
⎥⎦
⎡
⎢⎣ x1

x2

x3

⎤
⎥⎦ = · · · = (x1 + x2)

⎡
⎢⎣ 1

1
0

⎤
⎥⎦

︸ ︷︷ ︸
=:v1

+(x2 + x3)

⎡
⎢⎣ 1

−1
1

⎤
⎥⎦

︸ ︷︷ ︸
=:v2

,

we obtain

Im A =
{
Ax : x ∈ R3

}
= {(x1 + x2)v1 + (x2 + x3)v2, x1, x2, x3 ∈ R}
= span {v1, v2} . (This expression is not unique.)

rankA = dim(Im A) = 2.

ker A =
{
x ∈ R3 : Ax = 0

}
=

{
x ∈ R3 : (x1 + x2)v1 + (x2 + x3)v2 = 0, x1, x2, x3 ∈ R

}
=

{
x ∈ R3 : x1 = x3 = −x2

}
= span

⎧⎪⎨
⎪⎩
⎡
⎢⎣ 1

−1
1

⎤
⎥⎦
⎫⎪⎬
⎪⎭

AIW =
{
x ∈ R3 : Ax ∈ W

}
=

{
x ∈ R3 : x2 + x3 = 0

}
=

⎧⎪⎨
⎪⎩x1

⎡
⎢⎣ 1

0
0

⎤
⎥⎦+ x2

⎡
⎢⎣ 0

1
−1

⎤
⎥⎦ : x1, x2 ∈ R

⎫⎪⎬
⎪⎭ = span

⎧⎪⎨
⎪⎩
⎡
⎢⎣ 1

0
0

⎤
⎥⎦ ,

⎡
⎢⎣ 0

1
−1

⎤
⎥⎦
⎫⎪⎬
⎪⎭

Important facts

• Let A be a linear map from X to Y.

– Im A is a subspace of Y.
– ker A is a subspace of X .

• Let S and T be subspaces of X . Then,

– S + T is a subspace of X , where

S + T := {s + t : s ∈ S, t ∈ T } .

Note that S + S = S! and S − S = S!
– S ∩ T is a subspace of X .
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– S ∪ T is NOT a subspace of X in general.

• Let A1 and A2 be maps from a space X to a space Y. Define a map
A1 + A2 from X to Y as

(A1 + A2)x := A1x + A2x.

Then,
(A1 + A2)X ⊂ A1X + A2X .

Problems (Linear algebra)

1. Show that for linear vector spaces D and M and a linear operator
L : D �→ M,

(a) the kernel of L is a subspace of D.

(b) the image of L is a subspace of M.

(c) if D = M the image of L is an L-invariant subspace of M.

(d) any space spanned by a subset of the eigenvectors of L is an
L-invariant subspace of M.

2. Let R,S,T be subspaces of X , and suppose S ⊂ R. Show that

R∩ (S + T ) = R∩ S + R ∩ T = S + R∩ T .

Note that the intersection is not distributive in general. Consider
the case of three one-dimensional subspaces of the plane for a simple
counterexample.

The following subspace inclusion holds without the assumption S ⊂ R,

R∩ (S + T ) ⊃ R∩ S + R∩ T ,

and it is easy to prove.

3. Suppose X is a vector space, V,W ⊂ X are subspaces, and A : X → X
linear. Give proofs or counterexamples for the following claims. Here
AI denotes preimage of A, i.e. AIV �

= {x ∈ X|Ax ∈ V}.

(a) AIV ⊂ W implies V ⊂ AW.

(b) V ⊂ AW implies AIV ⊂ W
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(c) V ⊂ W implies AV ⊂ AW
(d) V ⊂ W implies AIV ⊂ AIW
(e) A(AIV) = V ∩ Im A

(f) AI(AV) = V + ker A

(g) AV ⊂ W if and only if V ⊂ AIW

4. V,W ⊂ X are subspaces that are invariant for a linear operator A :
X → X . Give proofs or counterexamples for the following claims.

(a) V + W is an invariant subspace for A.

(b) V ∪W is an invariant subspace for A.

(c) V ∩W is an invariant subspace for A.

(d) AI(V ∩W) is an invariant subspace for A.

5. Let C be a linear mapping C : X �→ Y, and assume that the subspaces
R1,R2 ⊂ X and S1,S2 ⊂ Y are given and arbitrary. Show that

(a) C(R1 + R2) = CR1 + CR2.

(b) C(R1 ∩R2) ⊂ (CR1) ∩ (CR2).

(c) CI(S1 + S2) ⊃ CIS1 + CIS2.

(d) CI(S1 ∩ S2) = (CIS1) ∩ (CIS2).

6. Let C1, C2 be linear mappings Ci : X �→ Y and let R ⊂ X be an
arbitrary subspace. Define a sum of two mappings C1 + C2 : X �→ Y
by (C1 + C2)x := C1x + C2x. Show that

(a) (C1 + C2)R ⊂ C1R + C2R,

(b) (C1 + C2)R = (C1 − C2)R does not generally hold.

7. Show that if U and V are finite dimensional subspaces of W and
dimU + dimV > dimW then U ∩ V �= {0}.

2 Invariant subspaces

Let S be a subspace in Rn, A be a linear map from Rn to Rn and B be a
linear map from Rm to Rn.
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A-invariant subspaces

• S is A-invariant (invariant subspace under A) if

AS ⊂ S.

How to check this? There are two different ways to check if a set is A-
invariant.

Method 1

Although S has infinite elements, we do not need to check As ∈ S for each
s ∈ S, and we have only to check Avj ∈ S for the basis {vj}p

j=1 of the
subspace S.

Suppose that Avj ∈ S for j = 1, . . . , p. Any element in S can be expressed
as
∑p

j=1 αjvj .

A

⎛
⎝ p∑

j=1

αjvj

⎞
⎠ =

p∑
j=1

αjAvj (since A is linear)

∈ S (since Avj ∈ S and S is a subspace)

Therefore, it is enough to check if Avj ∈ S for j = 1, . . . , p.

Suppose now that Avj ∈ S for j = 1, . . . , p. Then, we can write Avj as

Avj =
p∑

i=1

βijvi, j = 1, . . . , p.

In a matrix form,

A
[

v1 · · · vp

]
︸ ︷︷ ︸

=:V

=
[ ∑p

i=1 βi1vi · · · ∑p
i=1 βipvi

]

=
[

v1 · · · vp

]
︸ ︷︷ ︸

=:V

⎡
⎢⎣

β11 · · · β1p
...

. . .
...

βp1 · · · βpp

⎤
⎥⎦

︸ ︷︷ ︸
K

.

Conversely, if we can transform AV into a form V K, then we can conclude
that AS ⊂ S.
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To recap, in order to check if S is A-invariant, try to find a matrix K
satisfying

AV = V K,

where V consists of the basis of S. If this is possible (impossible), S is
A-invariant (not A-invariant).

Method 2

Another way to check if a set S is A-invariant is to define S via

S := {x ∈ Rn : Px = 0} .

Then Ax ∈ S, ∀x ∈ S implies PAx = 0 ⇒ Pẋ = 0, ∀x ∈ S.

(A,B)-invariant subspaces

• S is an (A,B)-invariant (controlled invariant) subspace if there exists
an F satisfying

(A + BF )S ⊂ S.

Method 1

A necessary and sufficient condition for a subspace S to be (A,B)-invariant
is (see Theorem 2.2 in page 11 in the lecture note)

AS ⊂ S + Im B.

Note that this condition does not involve F . To check this condition, again
we have only to check

Avj ∈ S + Im B, j = 1, . . . , p.

In this case,

Avj =
p∑

i=1

βijvi + Buj, j = 1, . . . , p,

or in a matrix form,

A
[

v1 · · · vp

]
= V K + B

[
u1 · · · up

]
︸ ︷︷ ︸

U

.

6



Conversely, if we can rewrite AV as the form V K+BU , then AS ⊂ S+Im B
holds.

To recap, in order to check if S is (A,B)-invariant, try to find matrices K
and U satisfying

AV = V K + BU,

where V consists of the basis of S. If this is possible (impossible), S is
(A,B)-invariant (not (A,B)-invariant).

Now, the question is

• How to find a friend F which makes S to be (A + BF )-invariant?

You need to solve FV = −U (see also the lectures notes, Section 2.2).

Method 2

To check if a set S is (A,B)-invariant, we can define S via

S := {x ∈ Rn : Px = 0} .

Then we try to find a state feedback u = Fx such that (A + BF )x ∈ S,
∀x ∈ S implies P (A + BF )x = 0 ⇒ Pẋ = 0, ∀x ∈ S.

Example (Invariant subspace)

Consider the following circuit system (which we took from the lecture note
of Matematisk systemteori grundkurs).

R R

CL

x

x2

1

1v
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This system has a state space description as[
ẋ1

ẋ2

]
=

[
−R

L 0
0 − 1

RC

] [
x1

x2

]
+

[
1
L
1

RC

]
v1.

Now, we suppose that the input signal u1 is a sinusoidal with some additional
term [

v̇1

v̇2

]
=

[
0 ω
−ω 0

] [
v1

v2

]
+

[
u1

u2

]
.

Ignoring the physical reasonability, we assume R = L = C = ω = 1. Then
the system can be written in the following way.⎡

⎢⎢⎢⎣
ẋ1

ẋ2

v̇1

v̇2

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

−1 0 1 0
0 −1 1 0
0 0 0 1
0 0 −1 0

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
=:A

⎡
⎢⎢⎢⎣

x1

x2

v1

v2

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

0 0
0 0
1 0
0 1

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
=:B

[
u1

u2

]

In order to not get confused in the notations, we change the variables v1, v2

to x3, x4, we get the following system:⎡
⎢⎢⎢⎣

ẋ1

ẋ2

ẋ3

ẋ4

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

−1 0 1 0
0 −1 1 0
0 0 0 1
0 0 −1 0

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
=:A

⎡
⎢⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

0 0
0 0
1 0
0 1

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
=:B

[
u1

u2

]

First, we suppose that there is no input, i.e., u1 = u2 = 0. Let us consider
the following two subspaces.

1. S1 := span {e1, e2}.
Is S1 A-invariant?
(Method 1). Since

A
[

e1 e2

]
=
[

e1 e2

]
(−I),

AS1 ⊂ S1 ⇒ S1 is A-invariant.

Alternatively (Method 2),

S1 = {x ∈ Rn : x3 = 0, x4 = 0} .
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S1 A-invariant

⇒
{

ẋ3 = 0
ẋ4 = 0

∀x ∈ S1 ⇒
{

x4 = 0
−x3 = 0

∀x ∈ S1

So S1 is A-invariant.

2. S2 := span {e2, e4}.
Is S2 A-invariant?
(Method 1). Since

A
[

e2 e4

]
=
[
−e2 e3

]
,

AS2 is NOT a subspace of S2 ⇒ S2 is NOT A-invariant.
Then, the question is

• Is it possible to use a state feedback u = Fx so that S2 becomes
(A + BF )-invariant?

The possibility can be checked by testing if S2 is (A,B)-invariant.

A
[

e2 e4

]
=
[
−e2 e3

]
=
[

e2 e4

] [ −1 0
0 0

]
+ B

[
0 1
0 0

]
,

and hence AS2 ⊂ S2 + Im B ⇒ S2 is (A,B)-invariant.

What are the F that make S2 to be (A + BF )-invariant?

Let’s solve
FV = −U[

f1 f2 f3 f4

f5 f6 f7 f8

] [
e2 e4

]
=

[
0 −1
0 0

]

So, F is of the form (�=anything)

F1 =

[
� 0 � −1
� 0 � 0

]

Alternatively (Method 2),

S2 = {x ∈ Rn : x1 = 0, x3 = 0} .
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S2 A-invariant

⇒
{

ẋ1 = 0
ẋ3 = 0

∀x ∈ S2 ⇒
{

−x1 + x3 = 0
x4 = 0

∀x ∈ S2 Not true!

So, S2 is NOT A-invariant.
S2 controlled invariant?

⇒
{

ẋ1 = 0
ẋ3 = 0

∀x ∈ S2 ⇒
{

−x1 + x3 = 0
x4 + u1 = 0

∀x ∈ S2

Let u1 = f1x1 + f2x2 + f3x3 + f4x4, with f4 = −1, f2 = 0, f1, f3

arbitrary, u2 = f5x1 + f6x2 + f7x3 + f8x4 arbitrary, then we have
Pẋ ∈ S2 ∀x ∈ S2, so S2 is controlled invariant.
Here, F is of the form

F2 =

[
� 0 � −1
� � � �

]

Remark Note that the friend F2 obtained from the second method is
more general than F1 obtained from the first method.

Problem (Invariant subspaces)

For the following A, B and S, check if S is A-invariant, and if S is (A,B)-
invariant. Try to find a friend F of S (if S is (A,B)-invariant.)

1. A =

[
0 1
2 1

]
, B =

[
0
1

]
, S = span

{[
1
1

]}

2. A =

[
1 0
2 1

]
, B =

[
0
1

]
, S = span

{[
0
1

]}

3. A =

[
1 1
1 2

]
, B =

[
0
1

]
, S = span

{[
1
−1

]}

4. A =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦, B =

⎡
⎢⎢⎢⎢⎢⎣

0 0
0 0
1 0
0 0
0 1

⎤
⎥⎥⎥⎥⎥⎦, S = span

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎣

1
1
1
1
1

⎤
⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
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