Mathematical Systems Theory: Advanced Course Exercise Session 1

1 Linear algebra

Let \mathcal{X} and \mathcal{Y} be linear vector spaces over R, and A is a map from \mathcal{X} to \mathcal{Y}.

- Subspace \mathcal{S} in $\mathcal{X}: \mathcal{S} \subset \mathcal{X}$ and

$$
\alpha_{1} s_{1}+\alpha_{2} s_{2} \in \mathcal{S}, \forall \alpha_{1}, \alpha_{2} \in R, \text { and } \forall s_{1}, s_{2} \in \mathcal{S} .
$$

For R^{n}, subspaces \Leftrightarrow hyperplanes passing through origin.

- Image space

$$
\operatorname{Im} A:=\{y \in \mathcal{Y}: y=A x \text { for some } x \in \mathcal{X}\} .
$$

- Rank of A

$$
\operatorname{rank} A:=\operatorname{dim}(\operatorname{Im} A),
$$

where $\operatorname{dim}(\operatorname{Im} A)$ is the number of linearly independent vectors in the subspace $\operatorname{Im} A$.

- Kernel space (Null space)

$$
\operatorname{ker} A:=\{x \in \mathcal{X}: A x=0\} .
$$

- Preimage of $\mathcal{W}(\subset \mathcal{Y})$ under the map A

$$
A^{I} \mathcal{W}:=\{x \in \mathcal{X}: A x \in \mathcal{W}\} .
$$

Example

For the following matrix A and \mathcal{W}, obtain $\operatorname{Im} A, \operatorname{rank} A, \operatorname{ker} A$ and $A^{I} \mathcal{W}$,

$$
A:=\left[\begin{array}{ccc}
1 & 2 & 1 \\
1 & 0 & -1 \\
0 & 1 & 1
\end{array}\right], \mathcal{W}=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]\right\} .
$$

Since $A x$ is calculated as

$$
A x=\left[\begin{array}{ccc}
1 & 2 & 1 \\
1 & 0 & -1 \\
0 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\cdots=\left(x_{1}+x_{2}\right) \underbrace{\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]}_{=: v_{1}}+\left(x_{2}+x_{3}\right) \underbrace{\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]}_{=: v_{2}},
$$

we obtain

$$
\begin{aligned}
\operatorname{Im} A & =\left\{A x: x \in R^{3}\right\} \\
& =\left\{\left(x_{1}+x_{2}\right) v_{1}+\left(x_{2}+x_{3}\right) v_{2}, x_{1}, x_{2}, x_{3} \in R\right\} \\
& =\operatorname{span}\left\{v_{1}, v_{2}\right\} . \text { (This expression is not unique.) } \\
\operatorname{rank} A & =\operatorname{dim}(\operatorname{Im} A)=2 . \\
\operatorname{ker} A & =\left\{x \in R^{3}: A x=0\right\} \\
& =\left\{x \in R^{3}:\left(x_{1}+x_{2}\right) v_{1}+\left(x_{2}+x_{3}\right) v_{2}=0, x_{1}, x_{2}, x_{3} \in R\right\} \\
& =\left\{x \in R^{3}: x_{1}=x_{3}=-x_{2}\right\} \\
& =\operatorname{span}\left\{\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right\} \\
A^{I} \mathcal{W} & =\left\{x \in R^{3}: A x \in \mathcal{W}\right\} \\
& =\left\{x \in R^{3}: x_{2}+x_{3}=0\right\} \\
& =\left\{x_{1}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+x_{2}\left[\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right]: x_{1}, x_{2} \in R\right\}=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right]\right\}
\end{aligned}
$$

Important facts

- Let A be a linear map from \mathcal{X} to \mathcal{Y}.
$-\operatorname{Im} A$ is a subspace of \mathcal{Y}.
$-\operatorname{ker} A$ is a subspace of \mathcal{X}.
- Let \mathcal{S} and \mathcal{T} be subspaces of \mathcal{X}. Then,
$-\mathcal{S}+\mathcal{T}$ is a subspace of \mathcal{X}, where

$$
\mathcal{S}+\mathcal{T}:=\{s+t: s \in \mathcal{S}, t \in \mathcal{T}\}
$$

Note that $\mathcal{S}+\mathcal{S}=\mathcal{S}$! and $\mathcal{S}-\mathcal{S}=\mathcal{S}$!
$-\mathcal{S} \cap \mathcal{T}$ is a subspace of \mathcal{X}.
$-\mathcal{S} \cup \mathcal{T}$ is NOT a subspace of \mathcal{X} in general.

- Let A_{1} and A_{2} be maps from a space \mathcal{X} to a space \mathcal{Y}. Define a map $A_{1}+A_{2}$ from \mathcal{X} to \mathcal{Y} as

$$
\left(A_{1}+A_{2}\right) x:=A_{1} x+A_{2} x
$$

Then,

$$
\left(A_{1}+A_{2}\right) \mathcal{X} \subset A_{1} \mathcal{X}+A_{2} \mathcal{X}
$$

Problems (Linear algebra)

1. Show that for linear vector spaces \mathcal{D} and \mathcal{M} and a linear operator $L: \mathcal{D} \mapsto \mathcal{M}$,
(a) the kernel of L is a subspace of \mathcal{D}.
(b) the image of L is a subspace of \mathcal{M}.
(c) if $\mathcal{D}=\mathcal{M}$ the image of L is an L-invariant subspace of \mathcal{M}.
(d) any space spanned by a subset of the eigenvectors of L is an L-invariant subspace of \mathcal{M}.
2. Let $\mathcal{R}, \mathcal{S}, \mathcal{T}$ be subspaces of \mathcal{X}, and suppose $\mathcal{S} \subset \mathcal{R}$. Show that

$$
\mathcal{R} \cap(\mathcal{S}+\mathcal{T})=\mathcal{R} \cap \mathcal{S}+\mathcal{R} \cap \mathcal{T}=\mathcal{S}+\mathcal{R} \cap \mathcal{T}
$$

Note that the intersection is not distributive in general. Consider the case of three one-dimensional subspaces of the plane for a simple counterexample.

The following subspace inclusion holds without the assumption $\mathcal{S} \subset \mathcal{R}$,

$$
\mathcal{R} \cap(\mathcal{S}+\mathcal{T}) \supset \mathcal{R} \cap \mathcal{S}+\mathcal{R} \cap \mathcal{T}
$$

and it is easy to prove.
3. Suppose \mathcal{X} is a vector space, $\mathcal{V}, \mathcal{W} \subset \mathcal{X}$ are subspaces, and $A: \mathcal{X} \rightarrow \mathcal{X}$ linear. Give proofs or counterexamples for the following claims. Here A^{I} denotes preimage of A, i.e. $A^{I} \mathcal{V} \triangleq\{x \in \mathcal{X} \mid A x \in \mathcal{V}\}$.
(a) $A^{I} \mathcal{V} \subset \mathcal{W}$ implies $\mathcal{V} \subset A \mathcal{W}$.
(b) $\mathcal{V} \subset A \mathcal{W}$ implies $A^{I} \mathcal{V} \subset \mathcal{W}$
(c) $\mathcal{V} \subset \mathcal{W}$ implies $A \mathcal{V} \subset A \mathcal{W}$
(d) $\mathcal{V} \subset \mathcal{W}$ implies $A^{I} \mathcal{V} \subset A^{I} \mathcal{W}$
(e) $A\left(A^{I} \mathcal{V}\right)=\mathcal{V} \cap \operatorname{Im} A$
(f) $A^{I}(A \mathcal{V})=\mathcal{V}+\operatorname{ker} A$
(g) $A \mathcal{V} \subset \mathcal{W}$ if and only if $\mathcal{V} \subset A^{I} \mathcal{W}$
4. $\mathcal{V}, \mathcal{W} \subset \mathcal{X}$ are subspaces that are invariant for a linear operator A : $\mathcal{X} \rightarrow \mathcal{X}$. Give proofs or counterexamples for the following claims.
(a) $\mathcal{V}+\mathcal{W}$ is an invariant subspace for A.
(b) $\mathcal{V} \cup \mathcal{W}$ is an invariant subspace for A.
(c) $\mathcal{V} \cap \mathcal{W}$ is an invariant subspace for A.
(d) $A^{I}(\mathcal{V} \cap \mathcal{W})$ is an invariant subspace for A.
5. Let C be a linear mapping $C: \mathcal{X} \mapsto \mathcal{Y}$, and assume that the subspaces $\mathcal{R}_{1}, \mathcal{R}_{2} \subset \mathcal{X}$ and $\mathcal{S}_{1}, \mathcal{S}_{2} \subset \mathcal{Y}$ are given and arbitrary. Show that
(a) $C\left(\mathcal{R}_{1}+\mathcal{R}_{2}\right)=C \mathcal{R}_{1}+C \mathcal{R}_{2}$.
(b) $C\left(\mathcal{R}_{1} \cap \mathcal{R}_{2}\right) \subset\left(C \mathcal{R}_{1}\right) \cap\left(C \mathcal{R}_{2}\right)$.
(c) $C^{I}\left(\mathcal{S}_{1}+\mathcal{S}_{2}\right) \supset C^{I} \mathcal{S}_{1}+C^{I} \mathcal{S}_{2}$.
(d) $C^{I}\left(\mathcal{S}_{1} \cap \mathcal{S}_{2}\right)=\left(C^{I} \mathcal{S}_{1}\right) \cap\left(C^{I} \mathcal{S}_{2}\right)$.
6. Let C_{1}, C_{2} be linear mappings $C_{i}: \mathcal{X} \mapsto \mathcal{Y}$ and let $\mathcal{R} \subset \mathcal{X}$ be an arbitrary subspace. Define a sum of two mappings $C_{1}+C_{2}: \mathcal{X} \mapsto \mathcal{Y}$ by $\left(C_{1}+C_{2}\right) x:=C_{1} x+C_{2} x$. Show that
(a) $\left(C_{1}+C_{2}\right) \mathcal{R} \subset C_{1} \mathcal{R}+C_{2} \mathcal{R}$,
(b) $\left(C_{1}+C_{2}\right) \mathcal{R}=\left(C_{1}-C_{2}\right) \mathcal{R}$ does not generally hold.
7. Show that if \mathcal{U} and \mathcal{V} are finite dimensional subspaces of \mathcal{W} and $\operatorname{dim} \mathcal{U}+\operatorname{dim} \mathcal{V}>\operatorname{dim} \mathcal{W}$ then $\mathcal{U} \cap \mathcal{V} \neq\{0\}$.

2 Invariant subspaces

Let \mathcal{S} be a subspace in R^{n}, A be a linear map from R^{n} to R^{n} and B be a linear map from R^{m} to R^{n}.

A-invariant subspaces

- \mathcal{S} is A-invariant (invariant subspace under A) if

$$
A \mathcal{S} \subset \mathcal{S}
$$

How to check this? There are two different ways to check if a set is Ainvariant.

Method 1

Although \mathcal{S} has infinite elements, we do not need to check $A s \in \mathcal{S}$ for each $s \in \mathcal{S}$, and we have only to check $A v_{j} \in \mathcal{S}$ for the basis $\left\{v_{j}\right\}_{j=1}^{p}$ of the subspace \mathcal{S}.
Suppose that $A v_{j} \in \mathcal{S}$ for $j=1, \ldots, p$. Any element in \mathcal{S} can be expressed as $\sum_{j=1}^{p} \alpha_{j} v_{j}$.

$$
\begin{aligned}
A\left(\sum_{j=1}^{p} \alpha_{j} v_{j}\right) & =\sum_{j=1}^{p} \alpha_{j} A v_{j} \text { (since } A \text { is linear) } \\
& \in \mathcal{S} \text { (since } A v_{j} \in \mathcal{S} \text { and } \mathcal{S} \text { is a subspace) }
\end{aligned}
$$

Therefore, it is enough to check if $A v_{j} \in \mathcal{S}$ for $j=1, \ldots, p$.
Suppose now that $A v_{j} \in \mathcal{S}$ for $j=1, \ldots, p$. Then, we can write $A v_{j}$ as

$$
A v_{j}=\sum_{i=1}^{p} \beta_{i j} v_{i}, j=1, \ldots, p
$$

In a matrix form,

$$
\begin{aligned}
A \underbrace{\left[\begin{array}{ccc}
v_{1} & \cdots & v_{p}
\end{array}\right]}_{=: V} & =\left[\begin{array}{lll}
\sum_{i=1}^{p} \beta_{i 1} v_{i} & \cdots & \sum_{i=1}^{p} \beta_{i p} v_{i}
\end{array}\right] \\
& =\underbrace{\left[\begin{array}{ccc}
v_{1} & \cdots & v_{p}
\end{array}\right]}_{=: V} \underbrace{\left[\begin{array}{ccc}
\beta_{11} & \cdots & \beta_{1 p} \\
\vdots & \ddots & \vdots \\
\beta_{p 1} & \cdots & \beta_{p p}
\end{array}\right]}_{K} .
\end{aligned}
$$

Conversely, if we can transform $A V$ into a form $V K$, then we can conclude that $A \mathcal{S} \subset \mathcal{S}$.

To recap, in order to check if \mathcal{S} is A-invariant, try to find a matrix K satisfying

$$
A V=V K,
$$

where V consists of the basis of \mathcal{S}. If this is possible (impossible), \mathcal{S} is A-invariant (not A-invariant).

Method 2

Another way to check if a set S is A-invariant is to define S via

$$
S:=\left\{x \in \mathcal{R}^{n}: P x=0\right\} .
$$

Then $A x \in S, \forall x \in S$ implies $P A x=0 \Rightarrow P \dot{x}=0, \forall x \in S$.

(A,B)-invariant subspaces

- \mathcal{S} is an (A, B)-invariant (controlled invariant) subspace if there exists an F satisfying

$$
(A+B F) \mathcal{S} \subset \mathcal{S}
$$

Method 1

A necessary and sufficient condition for a subspace \mathcal{S} to be (A, B)-invariant is (see Theorem 2.2 in page 11 in the lecture note)

$$
A \mathcal{S} \subset \mathcal{S}+\operatorname{Im} B
$$

Note that this condition does not involve F. To check this condition, again we have only to check

$$
A v_{j} \in \mathcal{S}+\operatorname{Im} B, j=1, \ldots, p
$$

In this case,

$$
A v_{j}=\sum_{i=1}^{p} \beta_{i j} v_{i}+B u_{j}, j=1, \ldots, p,
$$

or in a matrix form,

$$
A\left[\begin{array}{lll}
v_{1} & \cdots & v_{p}
\end{array}\right]=V K+B \underbrace{\left[\begin{array}{lll}
u_{1} & \cdots & u_{p}
\end{array}\right]}_{U} .
$$

Conversely, if we can rewrite $A V$ as the form $V K+B U$, then $A \mathcal{S} \subset \mathcal{S}+\operatorname{Im} B$ holds.

To recap, in order to check if \mathcal{S} is (A, B)-invariant, try to find matrices K and U satisfying

$$
A V=V K+B U
$$

where V consists of the basis of \mathcal{S}. If this is possible (impossible), \mathcal{S} is (A, B)-invariant (not (A, B)-invariant).

Now, the question is

- How to find a friend F which makes \mathcal{S} to be $(A+B F)$-invariant?

You need to solve $F V=-U$ (see also the lectures notes, Section 2.2).

Method 2

To check if a set S is (A,B)-invariant, we can define S via

$$
S:=\left\{x \in \mathcal{R}^{n}: P x=0\right\} .
$$

Then we try to find a state feedback $u=F x$ such that $(A+B F) x \in S$, $\forall x \in S$ implies $P(A+B F) x=0 \Rightarrow P \dot{x}=0, \forall x \in S$.

Example (Invariant subspace)

Consider the following circuit system (which we took from the lecture note of Matematisk systemteori grundkurs).

This system has a state space description as

$$
\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{cc}
-\frac{R}{L} & 0 \\
0 & -\frac{1}{R C}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{c}
\frac{1}{L} \\
\frac{1}{R C}
\end{array}\right] v_{1} .
$$

Now, we suppose that the input signal u_{1} is a sinusoidal with some additional term

$$
\left[\begin{array}{l}
\dot{v}_{1} \\
\dot{v}_{2}
\end{array}\right]=\left[\begin{array}{cc}
0 & \omega \\
-\omega & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]+\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right] .
$$

Ignoring the physical reasonability, we assume $R=L=C=\omega=1$. Then the system can be written in the following way.

$$
\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{v}_{1} \\
\dot{v}_{2}
\end{array}\right]=\underbrace{\left[\begin{array}{cccc}
-1 & 0 & 1 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0
\end{array}\right]}_{=: A}\left[\begin{array}{l}
x_{1} \\
x_{2} \\
v_{1} \\
v_{2}
\end{array}\right]+\underbrace{\left[\begin{array}{ll}
0 & 0 \\
0 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right]}_{=: B}\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]
$$

In order to not get confused in the notations, we change the variables v_{1}, v_{2} to x_{3}, x_{4}, we get the following system:

$$
\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3} \\
\dot{x}_{4}
\end{array}\right]=\underbrace{\left[\begin{array}{cccc}
-1 & 0 & 1 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0
\end{array}\right]}_{=: A}\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]+\underbrace{\left[\begin{array}{ll}
0 & 0 \\
0 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right]}_{=: B}\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]
$$

First, we suppose that there is no input, i.e., $u_{1}=u_{2}=0$. Let us consider the following two subspaces.

1. $\mathcal{S}_{1}:=\operatorname{span}\left\{e_{1}, e_{2}\right\}$.

Is $\mathcal{S}_{1} A$-invariant?
(Method 1). Since

$$
A\left[\begin{array}{ll}
e_{1} & e_{2}
\end{array}\right]=\left[\begin{array}{ll}
e_{1} & e_{2}
\end{array}\right](-I)
$$

$A \mathcal{S}_{1} \subset \mathcal{S}_{1} \Rightarrow \mathcal{S}_{1}$ is A-invariant.

Alternatively (Method 2),

$$
S_{1}=\left\{x \in \mathcal{R}^{n}: x_{3}=0, x_{4}=0\right\} .
$$

$S_{1} A$-invariant

$$
\Rightarrow\left\{\begin{array} { l }
{ \dot { x } _ { 3 } = 0 } \\
{ \dot { x } _ { 4 } = 0 }
\end{array} \quad \forall x \in S _ { 1 } \Rightarrow \left\{\begin{array}{l}
x_{4}=0 \\
-x_{3}=0
\end{array} \quad \forall x \in S_{1}\right.\right.
$$

So S_{1} is A-invariant.
2. $\mathcal{S}_{2}:=\operatorname{span}\left\{e_{2}, e_{4}\right\}$.

Is $\mathcal{S}_{2} A$-invariant?
(Method 1). Since

$$
A\left[\begin{array}{ll}
e_{2} & e_{4}
\end{array}\right]=\left[\begin{array}{ll}
-e_{2} & e_{3}
\end{array}\right],
$$

$A \mathcal{S}_{2}$ is NOT a subspace of $\mathcal{S}_{2} \Rightarrow \mathcal{S}_{2}$ is NOT A-invariant.
Then, the question is

- Is it possible to use a state feedback $u=F x$ so that \mathcal{S}_{2} becomes $(A+B F)$-invariant?

The possibility can be checked by testing if \mathcal{S}_{2} is (A, B)-invariant.

$$
A\left[\begin{array}{ll}
e_{2} & e_{4}
\end{array}\right]=\left[\begin{array}{ll}
-e_{2} & e_{3}
\end{array}\right]=\left[\begin{array}{ll}
e_{2} & e_{4}
\end{array}\right]\left[\begin{array}{cc}
-1 & 0 \\
0 & 0
\end{array}\right]+B\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]
$$

and hence $A \mathcal{S}_{2} \subset \mathcal{S}_{2}+\operatorname{Im} B \Rightarrow \mathcal{S}_{2}$ is (A, B)-invariant.

What are the F that make \mathcal{S}_{2} to be $(A+B F)$-invariant?
Let's solve

$$
\begin{gathered}
F V=-U \\
{\left[\begin{array}{cccc}
f_{1} & f_{2} & f_{3} & f_{4} \\
f_{5} & f_{6} & f_{7} & f_{8}
\end{array}\right]\left[\begin{array}{ll}
e_{2} & e_{4}
\end{array}\right]=\left[\begin{array}{cc}
0 & -1 \\
0 & 0
\end{array}\right]}
\end{gathered}
$$

So, F is of the form ($\star=$ anything)

$$
F_{1}=\left[\begin{array}{cccc}
\star & 0 & \star & -1 \\
\star & 0 & \star & 0
\end{array}\right]
$$

Alternatively (Method 2),

$$
S_{2}=\left\{x \in \mathcal{R}^{n}: x_{1}=0, x_{3}=0\right\} .
$$

$S_{2} A$-invariant

$$
\Rightarrow\left\{\begin{array} { l }
{ \dot { x } _ { 1 } = 0 } \\
{ \dot { x } _ { 3 } = 0 }
\end{array} \quad \forall x \in S _ { 2 } \Rightarrow \left\{\begin{array}{l}
-x_{1}+x_{3}=0 \\
x_{4}=0
\end{array} \quad \forall x \in S_{2} \quad\right.\right. \text { Not true! }
$$

So, S_{2} is NOT A-invariant.
S_{2} controlled invariant?

$$
\Rightarrow\left\{\begin{array} { l }
{ \dot { x } _ { 1 } = 0 } \\
{ \dot { x } _ { 3 } = 0 }
\end{array} \quad \forall x \in S _ { 2 } \Rightarrow \left\{\begin{array}{l}
-x_{1}+x_{3}=0 \\
x_{4}+u_{1}=0
\end{array} \quad \forall x \in S_{2}\right.\right.
$$

Let $u_{1}=f_{1} x_{1}+f_{2} x_{2}+f_{3} x_{3}+f_{4} x_{4}$, with $f_{4}=-1, f_{2}=0, f_{1}, f_{3}$ arbitrary, $u_{2}=f_{5} x_{1}+f_{6} x_{2}+f_{7} x_{3}+f_{8} x_{4}$ arbitrary, then we have $P \dot{x} \in S_{2} \forall x \in S_{2}$, so S_{2} is controlled invariant.
Here, F is of the form

$$
F_{2}=\left[\begin{array}{cccc}
\star & 0 & \star & -1 \\
\star & \star & \star & \star
\end{array}\right]
$$

Remark Note that the friend F_{2} obtained from the second method is more general than F_{1} obtained from the first method.

Problem (Invariant subspaces)

For the following A, B and \mathcal{S}, check if \mathcal{S} is A-invariant, and if \mathcal{S} is (A, B) invariant. Try to find a friend F of \mathcal{S} (if \mathcal{S} is (A, B)-invariant.)

1. $A=\left[\begin{array}{ll}0 & 1 \\ 2 & 1\end{array}\right], B=\left[\begin{array}{l}0 \\ 1\end{array}\right], \mathcal{S}=\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}$
2. $A=\left[\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right], B=\left[\begin{array}{l}0 \\ 1\end{array}\right], \mathcal{S}=\operatorname{span}\left\{\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\}$
3. $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right], B=\left[\begin{array}{l}0 \\ 1\end{array}\right], \mathcal{S}=\operatorname{span}\left\{\left[\begin{array}{c}1 \\ -1\end{array}\right]\right\}$
4. $A=\left[\begin{array}{lllll}0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right], B=\left[\begin{array}{ll}0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 0 \\ 0 & 1\end{array}\right], \mathcal{S}=\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1 \\ 1\end{array}\right]\right\}$
