
Mathematical Systems Theory: Advanced Course

Exercise Session 2

1 Reachability subspace

Suppose that A ∈ Rn×n and B ∈ Rn×m are given.

• A subspace R is a reachability subspace if there exist matrices F and
G such that

R = 〈A + BF |Im BG〉 .

• How can we check if a given (A,B)-invariant subspace R is a reacha-
bility subspace? (See Corollary 2.6 in page 15 in the lecture note.)

Check if the following holds:

R = 〈A + BF |Im B ∩R〉

where F is an arbitrary friend of R.

• Suppose that R is a reachability subspace. How can we construct G?
(To obtain a friend F of R, see the note for Exercise Session 1.)

We find G ∈ Rm×m that satisfies

Im B ∩R = Im BG.

Suppose that Im B∩R is a subspace spanned by linearly independent
column vectors p1, · · · , pr (pi ∈ Rn). Then, we can obtain linearly
independent vectors u1, · · · , ur (ui ∈ Rm) such that

[

p1 · · · pr

]

= B
[

u1 · · · ur

]

.

Choose ur+1, · · · , um so that {ui}
m
i=1 is a basis for Rm. If we take

G :=
[

u1 · · · ur 0 · · · 0
] [

u1 u2 · · · um

]−1
,

then

BG
[

u1 u2 · · · um

]

=
[

p1 · · · pr 0 · · · 0
]

and hence Im B ∩R = Im BG holds.
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Note. If Im B ∩ R is spanned by a subset of columns of B, then
it is VERY EASY to construct G satisfying Im B ∩ R = Im BG.
Suppose that Im B ∩ R becomes a span of some subset of {bj}

m
j=1.

If Im B ∩ R = span
{

bk1
, · · · , bkp

}

, then we choose G as a diagonal

matrix with one at (kj , kj)-elements for j = 1, . . . , p and with zero at
other elements.

• How can we construct the maximal reachability subspace R∗ contained
in a given subspace Z? (See Theorem 2.8 in page 15 in the lecture
note.)

R∗ = 〈A + BF |Im B ∩ S∗(Z)〉 ,

S∗(Z) : maximal (A,B)-invariant subspace in Z,

F : a friend of S∗.

Hence, to obtain R∗, we need S∗(Z). In the next section, we consider
Z = ker C (which is typical in control problems in this course), and
explain the procedure to derive V∗ := S∗(ker C).

Problem (Reachability subspace)

Suppose that

A :=






1 0 0
1 1 0
0 1 1




 , B :=






0 0
0 1
1 0




 .

Is S := span {e2} (A,B)-invariant? Is S a reachability subspace?

2 Computing V∗

Given matrices A, B and C, the maximal (A,B)-invariant subspace in kerC,
denoted by V∗, can be obtained by two procedures.

Method 1: V∗-algorithm

Step 0: Form a matrix V0 whose columns are a basis of ker C. Set i = 0.

Step 1: Obtain a matrix Zi, with the maximal number of linearly indepen-
dent row vectors, satisfying

Zi

[

Vi B
]

= 0

2



Step 2: Obtain a matrix Vi+1, with the maximal number of column vectors,
satisfying

[

C

ZiA

]

Vi+1 = 0

Step 3: If the two subspaces Vi and Vi+1, spanned by the columns Vi and
Vi+1 respectively, coincide, then stop. (Note that it may happen that
Vi and Vi+1 are different but Vi = Vi+1) Denoting the columns by
{vj}

p
j=1,

V∗ = span {v1, · · · , vp} .

Otherwise, increment i by one and go back to Step 1.

Note that this algorithm will converge in a finite step, due to Theorem 3.3
in page 23 in the lecture note.

Method 2: Ω
∗-algorithm

Denote G = ImB.

Step 0: Ω0 = Span{C},

Step k: Ωk = Ωk−1 + LAx(Ωk−1 ∩ G⊥). Where LAx(Ωk−1 ∩ G⊥) is the
span of all row vectors ωA where ω ∈ Ωk−1 ∩ G⊥.

If there is a k∗ such that Ωk∗+1 = Ωk∗, then

V∗ = Ω⊥

k∗ .

Example

For the following (A,B,C), compute the maximal (A,B)-invariant subspace
in ker C.

A =






1 0 1
0 −1 −1
0 0 1




 , B =






1 1
1 0
−2 −1




 , C =

[

1 1 1
]

.
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Method 1: V∗-algorithm

Step 0: First, compute ker C.

ker C =
{
x ∈ R3 : Cx = 0

}

=
{
x ∈ R3 : x1 + x2 + x3 = 0

}

=












x1

x2

−x1 − x2




 : x1 ∈ R, x2 ∈ R







= span












1
0
−1




 ,






0
1
−1












=: V0.

Therefore,

V0 =






1 0
0 1
−1 −1




 .

Step 1: Solve Z0

[

V0 B
]

= 0 for Z0.

Z0






1 0 1 1
0 1 1 0
−1 −1 −2 −1




 = 0 =⇒ Z0 =

[

1 1 1
]

Step 2: Solve

[

C

Z0A

]

V1 = 0 for V1.

[

1 1 1
1 −1 1

]

V1 = 0 =⇒ V1 =






1
0
−1




 .

Step 3: Since V1 := span {V1} is different from V0, go back to Step 1.

Step 1-2: Solve Z1

[

V1 B
]

= 0 for Z1.

Z1






1 1
0 1
−1 −2




 = 0 =⇒ Z1 =

[

1 1 1
]

Step 2-2: Solve

[

C

Z1A

]

V2 = 0 for V2. Then, V2 = V1.
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Step 3-2: Since V2 := span {V2} equals to V1,

V∗ = V1 = span












1
0
−1












.

Method 2: Ω
∗-algorithm

G = ImB =






1 1
1 0
−2 −1




 ⇒ G⊥ =

[

1 1 1
]

Step 0: Ω0 = Span{C} = Span{
[

1 1 1
]

},

Step 1: Ω1 = Ω0 + LAx(Ω0 ∩ G⊥).

Ω0 ∩ G⊥ =
[

1 1 1
]

= w

wA =
[

1 −1 1
]

, ⇒ LAx(Ω0 ∩ G⊥) = Span
[

1 −1 1
]

So Ω1 = Ω0 + LAx(Ω0 ∩ G⊥) = Span
{[

1 1 1
]

,
[

1 −1 1
]}

Step 2: Ω1 ∩ G⊥ =
[

1 1 1
]

= w, Therefore, we have Ω2 = Ω1, so

Ω∗ = Ω1

Then V∗ is computed as V∗ = Ω∗⊥ = Span












1
0
−1












.

What is the maximal reachability subspace R∗ in this example? To compute
R∗, we need a friend F of V∗. Since

A






1
0
−1






︸ ︷︷ ︸

V

=






0
1
−1




 =






1
0
−1






︸ ︷︷ ︸

V

(−1
︸︷︷︸

K

) +






1 1
1 0
−2 −1






︸ ︷︷ ︸

B

[

1
0

]

︸ ︷︷ ︸

U

,

by solving FV = −U , we obtain a solution

F =

[

0 0 1
0 0 0

]

.

Therefore,

R∗ = 〈A + BF |Im B ∩ V∗〉

=

〈





1 0 2
0 −1 0
0 0 −1






∣
∣
∣
∣
∣
∣
∣

Im






1
0
−1






〉

= Im






1
0
−1




 .
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From the definition of a reachability subspace, there is a G satisfying

R∗ = 〈A + BF |Im BG〉 .

How can we obtain G? We aim at choosing G with

Im B ∩R∗ = Im BG.

We achieve this relation with G =

[

0 0
0 1

]

.

Problem (Finding V∗)

For the following (A,B,C), compute V∗.

1. A =

[

1 1
1 2

]

, B =

[

0
1

]

, C =
[

1 1
]

.

2. A =










0 1 2 4 0
0 0 0 0 1
0 0 1 0 0
0 1 0 0 0
0 0 0 1 0










, B =










0 1
0 1
1 0
0 0
0 1










, C =

[

0 0 0 1 0
1 0 1 0 0

]

.

3. A =










0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0










, B =










0 0
0 0
1 0
0 0
0 1










, C =






1 0 0 −1 0
1 −1 0 0 0
0 0 0 1 −1




 .

3 Relative degree and normal form

Relative degree (Square MIMO case)

Suppose that (A,B,C) is minimal and that B and C have linearly indepen-
dent columns and rows, respectively. System







ẋ = Ax + Bu

y =






c1
...

cm




 x, ci ∈ R1×n
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with m-inputs (u ∈ Rm) and m-outputs (y ∈ Rm) has relative degree

(r1, · · · , rm) if for i = 1, . . . ,m,

ciA
jB = 01×m, j = 0, 1, . . . , ri − 2

ciA
ri−1B 6= 01×m,

and the matrix

L :=






c1A
r1−1B
...

cmArm−1B






is nonsingular.

Example (Relative degree)

A =








−1 1 0 1
0 1 0 0
1 0 1 1
1 1 1 −1








, B =








0 0
0 0
1 0
0 1








, C =

[

c1

c2

]

=

[

1 1 0 0
1 1 1 1

]

.

For c1,

c1B =
[

0 0
]

c1AB =
[

0 1
]

6=
[

0 0
]

=⇒ r1 = 2

For c2,

c2B =
[

1 1
]

6=
[

0 0
]

=⇒ r2 = 1

The matrix L becomes

L :=

[

c1AB

c2B

]

=

[

0 1
1 1

]

,

and it is clear that L is nonsingular. Hence, the system has relative degree

(r1, r2) = (2, 1) .
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Normal form

Once we have obtained relative degree, we can change coordinates of the
system to transform it into a normal form.







ż = Nz + Pξ

ξ̇i
1 = ξi

2

ξ̇i
2 = ξi

3
...

ξ̇i
ri−1 = ξi

ri

ξ̇i
ri

= Riz + Siξ + ciA
ri−1Bu

yi = ξi
1, i = 1, . . . ,m.

Normal form is useful in obtaining zero dynamics and in solving several
control problems (see Chapter 5 in the lecture note).

First, choose the new states as follows.







ξ1
1 := c1x

ξ1
2 := c1Ax

...
ξ1
r1

:= c1A
r1−1x







ξ2
1 := c2x

ξ2
2 := c2Ax

...
ξ2
r2

:= c2A
r2−1x

...






ξm
1 := cmx

ξm
2 := cmAx

...
ξm
rm

:= cmArm−1x

=⇒ ξ :=










































ξ1
1

ξ1
2
...

ξ1
r1

















ξ2
1

ξ2
2
...

ξ2
r2









...








ξm
1

ξm
2
...

ξm
rm










































=










































c1

c1A
...

c1A
r1−1

















c2

c2A
...

c2A
r2−1









...








cm

cmA
...

cmArm−1










































︸ ︷︷ ︸

=:Tξ

x

Note that ξ ∈ R(r1+···+rm). Since x ∈ Rn, for the coordinate change, we
need to add another n − (r1 + · · · + rm) states. We choose these states as

z := Tzx,

where Tz is a matrix of size (n − (r1 + · · · + rm)) × n and satisfies
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• TzB = 0

• T :=

[

Tz

Tξ

]

is nonsingular.

Why is such a choice of Tz possible? Since the columns of B span m

dimensional subspace Im B in Rn, there is an (n−m) dimensional subspace
W which is orthogonal to Im B, i.e.,

Rn = Im B + W, W ⊥ Im B.

In Tξ, there are ((r1 − 1) + · · · + (rm − 1)) = (r1 + · · · + rm − m) linearly
independent row vectors in W. Therefore, we can choose another

n − m − (r1 + · · · + rm − m) = n − (r1 + · · · + rm)

linearly independent row vectors in W.
The new state vector is

[

z

ξ

]

=

[

Tz

Tξ

]

︸ ︷︷ ︸

=:T

x.

Therefore,
[

ż

ξ̇

]

= T ẋ

= T (Ax + Bu)

= TAT−1

[

z

ξ

]

+ TBu

= TAT−1

[

z

ξ

]

+

[

0
TξB

]

u (since TzB = 0),

y = Cx =






c1
...

cm




 x =






ξ1
1
...

ξm
1




 .

Here, TAT−1 and TξB have special structures.

Example (Normal form)

Consider the same system as before, i.e.,

A =








−1 1 0 1
0 1 0 0
1 0 1 1
1 1 1 −1








, B =








0 0
0 0
1 0
0 1








, C =

[

c1

c2

]

=

[

1 1 0 0
1 1 1 1

]

.
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Relative degree is (2, 1). So, we choose the new states as

ξ :=






ξ1
1

ξ1
2

ξ2
1




 :=






c1

c1A

c2




 x =






1 1 0 0
−1 2 0 1
1 1 1 1




 x.

By adding another state z :=
[

1 0 0 0
]

x,

[

ż

ξ̇

]

=








1 −1 1 0
0 0 1 0
−9 7 −3 1
−5 3 −1 2








[

z

ξ

]

+








0 0
0 0
0 1
1 1








u,

y =

[

0 1 0 0
0 0 0 1

] [

z

ξ

]

.

or equivalently,

ż = 1
︸︷︷︸

N

·z +
[

−1 1 0
]

︸ ︷︷ ︸

P

ξ

ξ̇1
1 = ξ1

2

ξ̇1
2 = −9

︸︷︷︸

R1

z +
[

7 −3 1
]

︸ ︷︷ ︸

S1

ξ +
[

0 1
]

︸ ︷︷ ︸

c1AB

u

y1 = ξ1
1

ξ̇2
1 = −5

︸︷︷︸

R2

z +
[

3 −1 2
]

︸ ︷︷ ︸

S2

ξ +
[

1 1
]

︸ ︷︷ ︸

c2B

u

y2 = ξ2
1
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