Mathematical Systems Theory: Advanced Course Exercise Session 2

1 Reachability subspace

Suppose that $A \in R^{n \times n}$ and $B \in R^{n \times m}$ are given.

- A subspace \mathcal{R} is a reachability subspace if there exist matrices F and G such that

$$
\mathcal{R}=\langle A+B F \mid \operatorname{Im} B G\rangle
$$

- How can we check if a given (A, B)-invariant subspace \mathcal{R} is a reachability subspace? (See Corollary 2.6 in page 15 in the lecture note.)

Check if the following holds:

$$
\mathcal{R}=\langle A+B F \mid \operatorname{Im} B \cap \mathcal{R}\rangle
$$

where F is an arbitrary friend of \mathcal{R}.

- Suppose that \mathcal{R} is a reachability subspace. How can we construct G ? (To obtain a friend F of \mathcal{R}, see the note for Exercise Session 1.)

We find $G \in R^{m \times m}$ that satisfies

$$
\operatorname{Im} B \cap \mathcal{R}=\operatorname{Im} B G
$$

Suppose that $\operatorname{Im} B \cap \mathcal{R}$ is a subspace spanned by linearly independent column vectors $p_{1}, \cdots, p_{r}\left(p_{i} \in R^{n}\right)$. Then, we can obtain linearly independent vectors $u_{1}, \cdots, u_{r}\left(u_{i} \in R^{m}\right)$ such that

$$
\left[\begin{array}{lll}
p_{1} & \cdots & p_{r}
\end{array}\right]=B\left[\begin{array}{lll}
u_{1} & \cdots & u_{r}
\end{array}\right] .
$$

Choose u_{r+1}, \cdots, u_{m} so that $\left\{u_{i}\right\}_{i=1}^{m}$ is a basis for R^{m}. If we take

$$
G:=\left[\begin{array}{llllll}
u_{1} & \cdots & u_{r} & 0 & \cdots & 0
\end{array}\right]\left[\begin{array}{llll}
u_{1} & u_{2} & \cdots & u_{m}
\end{array}\right]^{-1}
$$

then

$$
B G\left[\begin{array}{llll}
u_{1} & u_{2} & \cdots & u_{m}
\end{array}\right]=\left[\begin{array}{llllll}
p_{1} & \cdots & p_{r} & 0 & \cdots & 0
\end{array}\right]
$$

and hence $\operatorname{Im} B \cap \mathcal{R}=\operatorname{Im} B G$ holds.

Note. If $\operatorname{Im} B \cap \mathcal{R}$ is spanned by a subset of columns of B, then it is VERY EASY to construct G satisfying $\operatorname{Im} B \cap \mathcal{R}=\operatorname{Im} B G$. Suppose that $\operatorname{Im} B \cap \mathcal{R}$ becomes a span of some subset of $\left\{b_{j}\right\}_{j=1}^{m}$. If $\operatorname{Im} B \cap \mathcal{R}=\operatorname{span}\left\{b_{k_{1}}, \cdots, b_{k_{p}}\right\}$, then we choose G as a diagonal matrix with one at $\left(k_{j}, k_{j}\right)$-elements for $j=1, \ldots, p$ and with zero at other elements.

- How can we construct the maximal reachability subspace \mathcal{R}^{*} contained in a given subspace \mathcal{Z} ? (See Theorem 2.8 in page 15 in the lecture note.)

$$
\begin{aligned}
& \mathcal{R}^{*}=\left\langle A+B F \mid \operatorname{Im} B \cap \mathcal{S}^{*}(\mathcal{Z})\right\rangle, \\
\mathcal{S}^{*}(\mathcal{Z}) & : \text { maximal }(A, B) \text {-invariant subspace in } \mathcal{Z}, \\
F & : \text { a friend of } \mathcal{S}^{*} .
\end{aligned}
$$

Hence, to obtain \mathcal{R}^{*}, we need $\mathcal{S}^{*}(\mathcal{Z})$. In the next section, we consider $\mathcal{Z}=\operatorname{ker} C$ (which is typical in control problems in this course), and explain the procedure to derive $\mathcal{V}^{*}:=\mathcal{S}^{*}(\operatorname{ker} C)$.

Problem (Reachability subspace)

Suppose that

$$
A:=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right], B:=\left[\begin{array}{ll}
0 & 0 \\
0 & 1 \\
1 & 0
\end{array}\right]
$$

Is $\mathcal{S}:=\operatorname{span}\left\{e_{2}\right\}(A, B)$-invariant? Is \mathcal{S} a reachability subspace?

2 Computing \mathcal{V}^{*}

Given matrices A, B and C, the maximal (A, B)-invariant subspace in ker C, denoted by \mathcal{V}^{*}, can be obtained by two procedures.

Method 1: \mathcal{V}^{*}-algorithm

Step 0: Form a matrix V_{0} whose columns are a basis of $\operatorname{ker} C$. Set $i=0$.
Step 1: Obtain a matrix Z_{i}, with the maximal number of linearly independent row vectors, satisfying

$$
Z_{i}\left[\begin{array}{ll}
V_{i} & B
\end{array}\right]=0
$$

Step 2: Obtain a matrix V_{i+1}, with the maximal number of column vectors, satisfying

$$
\left[\begin{array}{c}
C \\
Z_{i} A
\end{array}\right] V_{i+1}=0
$$

Step 3: If the two subspaces \mathcal{V}_{i} and \mathcal{V}_{i+1}, spanned by the columns V_{i} and V_{i+1} respectively, coincide, then stop. (Note that it may happen that V_{i} and V_{i+1} are different but $\mathcal{V}_{i}=\mathcal{V}_{i+1}$) Denoting the columns by $\left\{v_{j}\right\}_{j=1}^{p}$,

$$
\mathcal{V}^{*}=\operatorname{span}\left\{v_{1}, \cdots, v_{p}\right\} .
$$

Otherwise, increment i by one and go back to Step 1.
Note that this algorithm will converge in a finite step, due to Theorem 3.3 in page 23 in the lecture note.

Method 2: Ω^{*}-algorithm

Denote $G=\operatorname{Im} B$.
Step 0: $\Omega_{0}=\operatorname{Span}\{C\}$,
Step k: $\Omega_{k}=\Omega_{k-1}+L_{A x}\left(\Omega_{k-1} \cap G^{\perp}\right)$. Where $L_{A x}\left(\Omega_{k-1} \cap G^{\perp}\right)$ is the span of all row vectors ωA where $\omega \in \Omega_{k-1} \cap G^{\perp}$.
If there is a k^{*} such that $\Omega_{k^{*}+1}=\Omega_{k^{*}}$, then

$$
\mathcal{V}^{*}=\Omega_{k^{*}}^{\frac{1}{2}}
$$

Example

For the following (A, B, C), compute the maximal (A, B)-invariant subspace in $\operatorname{ker} C$.

$$
A=\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & -1 & -1 \\
0 & 0 & 1
\end{array}\right], B=\left[\begin{array}{cc}
1 & 1 \\
1 & 0 \\
-2 & -1
\end{array}\right], C=\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right] .
$$

Method 1: \mathcal{V}^{*}-algorithm

Step 0: First, compute ker C.

$$
\begin{aligned}
\operatorname{ker} C & =\left\{x \in R^{3}: C x=0\right\} \\
& =\left\{x \in R^{3}: x_{1}+x_{2}+x_{3}=0\right\} \\
& =\left\{\left[\begin{array}{c}
x_{1} \\
x_{2} \\
-x_{1}-x_{2}
\end{array}\right]: x_{1} \in R, x_{2} \in R\right\} \\
& =\operatorname{span}\left\{\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right],\left[\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right]\right\}=: \mathcal{V}_{0}
\end{aligned}
$$

Therefore,

$$
V_{0}=\left[\begin{array}{cc}
1 & 0 \\
0 & 1 \\
-1 & -1
\end{array}\right]
$$

Step 1: Solve $Z_{0}\left[\begin{array}{ll}V_{0} & B\end{array}\right]=0$ for Z_{0}.

$$
Z_{0}\left[\begin{array}{cccc}
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 \\
-1 & -1 & -2 & -1
\end{array}\right]=0 \Longrightarrow Z_{0}=\left[\begin{array}{ccc}
1 & 1 & 1
\end{array}\right]
$$

Step 2: Solve $\left[\begin{array}{c}C \\ Z_{0} A\end{array}\right] V_{1}=0$ for V_{1}.

$$
\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & -1 & 1
\end{array}\right] V_{1}=0 \Longrightarrow V_{1}=\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]
$$

Step 3: Since $\mathcal{V}_{1}:=\operatorname{span}\left\{V_{1}\right\}$ is different from \mathcal{V}_{0}, go back to Step 1.
Step 1-2: Solve $Z_{1}\left[\begin{array}{ll}V_{1} & B\end{array}\right]=0$ for Z_{1}.

$$
Z_{1}\left[\begin{array}{cc}
1 & 1 \\
0 & 1 \\
-1 & -2
\end{array}\right]=0 \Longrightarrow Z_{1}=\left[\begin{array}{ccc}
1 & 1 & 1
\end{array}\right]
$$

Step 2-2: Solve $\left[\begin{array}{c}C \\ Z_{1} A\end{array}\right] V_{2}=0$ for V_{2}. Then, $V_{2}=V_{1}$.

Step 3-2: Since $\mathcal{V}_{2}:=\operatorname{span}\left\{V_{2}\right\}$ equals to \mathcal{V}_{1},

$$
\mathcal{V}^{*}=\mathcal{V}_{1}=\operatorname{span}\left\{\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]\right\}
$$

Method 2: Ω^{*}-algorithm
$G=\operatorname{Im} B=\left[\begin{array}{cc}1 & 1 \\ 1 & 0 \\ -2 & -1\end{array}\right] \Rightarrow G^{\perp}=\left[\begin{array}{ccc}1 & 1 & 1\end{array}\right]$
Step 0: $\Omega_{0}=\operatorname{Span}\{C\}=\operatorname{Span}\left\{\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]\right\}$,
Step 1: $\Omega_{1}=\Omega_{0}+L_{A x}\left(\Omega_{0} \cap G^{\perp}\right)$.

$$
\begin{aligned}
& \Omega_{0} \cap G^{\perp}=\left[\begin{array}{ccc}
1 & 1 & 1
\end{array}\right]=w \\
& w A=\left[\begin{array}{lll}
1 & -1 & 1
\end{array}\right], \Rightarrow L_{A x}\left(\Omega_{0} \cap G^{\perp}\right)=\operatorname{Span}\left[\begin{array}{ccc}
1 & -1 & 1
\end{array}\right] \\
& \text { So } \Omega_{1}=\Omega_{0}+L_{A x}\left(\Omega_{0} \cap G^{\perp}\right)=\operatorname{Span}\left\{\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right],\left[\begin{array}{ccc}
1 & -1 & 1
\end{array}\right]\right\}
\end{aligned}
$$

Step 2: $\Omega_{1} \cap G^{\perp}=\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]=w$, Therefore, we have $\Omega_{2}=\Omega_{1}$, so $\Omega^{*}=\Omega_{1}$
Then \mathcal{V}^{*} is computed as $\mathcal{V}^{*}=\Omega^{* \perp}=\operatorname{Span}\left\{\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]\right\}$.
What is the maximal reachability subspace \mathcal{R}^{*} in this example? To compute \mathcal{R}^{*}, we need a friend F of \mathcal{V}^{*}. Since

$$
A \underbrace{\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]}_{V}=\left[\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right]=\underbrace{\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]}_{V} \underbrace{(-1}_{K})+\underbrace{\left[\begin{array}{cc}
1 & 1 \\
1 & 0 \\
-2 & -1
\end{array}\right]}_{B} \underbrace{\left[\begin{array}{c}
1 \\
0
\end{array}\right]}_{U}
$$

by solving $F V=-U$, we obtain a solution

$$
F=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

Therefore,

$$
\begin{aligned}
\mathcal{R}^{*} & =\left\langle A+B F \mid \operatorname{Im} B \cap \mathcal{V}^{*}\right\rangle \\
& =\left\langle\left.\left[\begin{array}{ccc}
1 & 0 & 2 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right] \right\rvert\, \operatorname{Im}\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]\right\rangle=\operatorname{Im}\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]
\end{aligned}
$$

From the definition of a reachability subspace, there is a G satisfying

$$
\mathcal{R}^{*}=\langle A+B F \mid \operatorname{Im} B G\rangle
$$

How can we obtain G ? We aim at choosing G with

$$
\operatorname{Im} B \cap \mathcal{R}^{*}=\operatorname{Im} B G
$$

We achieve this relation with $G=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$.

Problem (Finding \mathcal{V}^{*})

For the following (A, B, C), compute \mathcal{V}^{*}.

1. $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right], B=\left[\begin{array}{l}0 \\ 1\end{array}\right], C=\left[\begin{array}{ll}1 & 1\end{array}\right]$.
2. $A=\left[\begin{array}{lllll}0 & 1 & 2 & 4 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0\end{array}\right], B=\left[\begin{array}{ll}0 & 1 \\ 0 & 1 \\ 1 & 0 \\ 0 & 0 \\ 0 & 1\end{array}\right], C=\left[\begin{array}{lllll}0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0\end{array}\right]$.
3. $A=\left[\begin{array}{lllll}0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right], B=\left[\begin{array}{ll}0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 0 \\ 0 & 1\end{array}\right], C=\left[\begin{array}{ccccc}1 & 0 & 0 & -1 & 0 \\ 1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & -1\end{array}\right]$.

3 Relative degree and normal form

Relative degree (Square MIMO case)

Suppose that (A, B, C) is minimal and that B and C have linearly independent columns and rows, respectively. System

$$
\left\{\begin{aligned}
\dot{x} & =A x+B u \\
y & =\left[\begin{array}{c}
c_{1} \\
\vdots \\
c_{m}
\end{array}\right] x, c_{i} \in R^{1 \times n}
\end{aligned}\right.
$$

with m-inputs $\left(u \in R^{m}\right)$ and m-outputs $\left(y \in R^{m}\right)$ has relative degree $\left(r_{1}, \cdots, r_{m}\right)$ if for $i=1, \ldots, m$,

$$
\begin{aligned}
& c_{i} A^{j} B=0_{1 \times m}, \quad j=0,1, \ldots, r_{i}-2 \\
& c_{i} A^{r_{i}-1} B \neq 0_{1 \times m},
\end{aligned}
$$

and the matrix

$$
L:=\left[\begin{array}{c}
c_{1} A^{r_{1}-1} B \\
\vdots \\
c_{m} A^{r_{m}-1} B
\end{array}\right]
$$

is nonsingular.

Example (Relative degree)

$$
A=\left[\begin{array}{cccc}
-1 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 \\
1 & 1 & 1 & -1
\end{array}\right], B=\left[\begin{array}{ll}
0 & 0 \\
0 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right], C=\left[\begin{array}{c}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1
\end{array}\right]
$$

For c_{1},

$$
\begin{aligned}
& c_{1} B=\left[\begin{array}{ll}
0 & 0
\end{array}\right] \\
& c_{1} A B=\left[\begin{array}{ll}
0 & 1
\end{array}\right] \neq\left[\begin{array}{ll}
0 & 0
\end{array}\right] \Longrightarrow r_{1}=2
\end{aligned}
$$

For c_{2},

$$
c_{2} B=\left[\begin{array}{ll}
1 & 1
\end{array}\right] \neq\left[\begin{array}{ll}
0 & 0
\end{array}\right] \Longrightarrow r_{2}=1
$$

The matrix L becomes

$$
L:=\left[\begin{array}{c}
c_{1} A B \\
c_{2} B
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right]
$$

and it is clear that L is nonsingular. Hence, the system has relative degree

$$
\left(r_{1}, r_{2}\right)=(2,1)
$$

Normal form

Once we have obtained relative degree, we can change coordinates of the system to transform it into a normal form.

$$
\left\{\begin{aligned}
\dot{z} & =N z+P \xi \\
\dot{\xi}_{1}^{i} & =\xi_{2}^{i} \\
\dot{\xi}_{2}^{i} & =\xi_{3}^{i} \\
& \vdots \\
\dot{\xi}_{r_{i}-1}^{i} & =\xi_{r_{i}}^{i} \\
\dot{\xi}_{r_{i}}^{i} & =R_{i} z+S_{i} \xi+c_{i} A^{r_{i}-1} B u \\
y_{i} & =\xi_{1}^{i}, \quad i=1, \ldots, m
\end{aligned}\right.
$$

Normal form is useful in obtaining zero dynamics and in solving several control problems (see Chapter 5 in the lecture note).

First, choose the new states as follows.

Note that $\xi \in R^{\left(r_{1}+\cdots+r_{m}\right)}$. Since $x \in R^{n}$, for the coordinate change, we need to add another $n-\left(r_{1}+\cdots+r_{m}\right)$ states. We choose these states as

$$
z:=T_{z} x
$$

where T_{z} is a matrix of size $\left(n-\left(r_{1}+\cdots+r_{m}\right)\right) \times n$ and satisfies

- $T_{z} B=0$
- $T:=\left[\begin{array}{l}T_{z} \\ T_{\xi}\end{array}\right]$ is nonsingular.

Why is such a choice of T_{z} possible? Since the columns of B span m dimensional subspace $\operatorname{Im} B$ in R^{n}, there is an $(n-m)$ dimensional subspace \mathcal{W} which is orthogonal to $\operatorname{Im} B$, i.e.,

$$
R^{n}=\operatorname{Im} B+\mathcal{W}, \mathcal{W} \perp \operatorname{Im} B
$$

In T_{ξ}, there are $\left(\left(r_{1}-1\right)+\cdots+\left(r_{m}-1\right)\right)=\left(r_{1}+\cdots+r_{m}-m\right)$ linearly independent row vectors in \mathcal{W}. Therefore, we can choose another

$$
n-m-\left(r_{1}+\cdots+r_{m}-m\right)=n-\left(r_{1}+\cdots+r_{m}\right)
$$

linearly independent row vectors in \mathcal{W}.
The new state vector is

$$
\left[\begin{array}{c}
z \\
\xi
\end{array}\right]=\underbrace{\left[\begin{array}{c}
T_{z} \\
T_{\xi}
\end{array}\right]}_{=: T} x .
$$

Therefore,

$$
\begin{aligned}
{\left[\begin{array}{c}
\dot{z} \\
\dot{\xi}
\end{array}\right] } & =T \dot{x} \\
& =T(A x+B u) \\
& =T A T^{-1}\left[\begin{array}{c}
z \\
\xi \\
z \\
z \\
\xi
\end{array}\right]+T B u \\
& =T A T^{-1}+\left[\begin{array}{c}
0 \\
T_{\xi} B
\end{array}\right] u \quad\left(\text { since } T_{z} B=0\right), \\
y & =C x=\left[\begin{array}{c}
c_{1} \\
\vdots \\
c_{m}
\end{array}\right] x=\left[\begin{array}{c}
\xi_{1}^{1} \\
\vdots \\
\xi_{1}^{m}
\end{array}\right] .
\end{aligned}
$$

Here, $T A T^{-1}$ and $T_{\xi} B$ have special structures.

Example (Normal form)

Consider the same system as before, i.e.,

$$
A=\left[\begin{array}{cccc}
-1 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 \\
1 & 1 & 1 & -1
\end{array}\right], B=\left[\begin{array}{ll}
0 & 0 \\
0 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right], C=\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1
\end{array}\right] .
$$

Relative degree is $(2,1)$. So, we choose the new states as

$$
\xi:=\left[\begin{array}{c}
\xi_{1}^{1} \\
\xi_{2}^{1} \\
\xi_{1}^{2}
\end{array}\right]:=\left[\begin{array}{c}
c_{1} \\
c_{1} A \\
c_{2}
\end{array}\right] x=\left[\begin{array}{cccc}
1 & 1 & 0 & 0 \\
-1 & 2 & 0 & 1 \\
1 & 1 & 1 & 1
\end{array}\right] x .
$$

By adding another state $z:=\left[\begin{array}{llll}1 & 0 & 0 & 0\end{array}\right] x$,

$$
\begin{aligned}
{\left[\begin{array}{c}
\dot{z} \\
\dot{\xi}
\end{array}\right] } & =\left[\begin{array}{cccc}
1 & -1 & 1 & 0 \\
0 & 0 & 1 & 0 \\
-9 & 7 & -3 & 1 \\
-5 & 3 & -1 & 2
\end{array}\right]\left[\begin{array}{l}
z \\
\xi
\end{array}\right]+\left[\begin{array}{ll}
0 & 0 \\
0 & 0 \\
0 & 1 \\
1 & 1
\end{array}\right] u \\
y & =\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
z \\
\xi
\end{array}\right]
\end{aligned}
$$

or equivalently,

$$
\begin{aligned}
\dot{z} & =\underbrace{1}_{N} \cdot z+\underbrace{\left[\begin{array}{ccc}
-1 & 1 & 0
\end{array}\right]}_{P} \xi \\
\dot{\xi}_{1}^{1} & =\xi_{2}^{1} \\
\dot{\xi}_{2}^{1} & =\underbrace{-9}_{R_{1}} z+\underbrace{\left[\begin{array}{lll}
7 & -3 & 1
\end{array}\right]}_{S_{1}} \xi+\underbrace{\left[\begin{array}{ll}
0 & 1
\end{array}\right]}_{c_{1} A B} u \\
y_{1} & =\xi_{1}^{1} \\
\dot{\xi}_{1}^{2} & =\underbrace{-5}_{R_{2}} z+\underbrace{\left[\begin{array}{lll}
3 & -1 & 2
\end{array}\right]}_{S_{2}} \xi+\underbrace{\left[\begin{array}{ll}
1 & 1
\end{array}\right]}_{c_{2} B} u \\
y_{2} & =\xi_{1}^{2}
\end{aligned}
$$

