Mathematical Systems Theory: Advanced Course Exercise Session 2

1 Reachability subspace

Suppose that $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{n \times m}$ are given.

• A subspace \mathcal{R} is a *reachability subspace* if there exist matrices F and G such that

$$\mathcal{R} = \langle A + BF | \text{Im } BG \rangle.$$

How can we check if a given (A, B)-invariant subspace R is a reachability subspace? (See Corollary 2.6 in page 15 in the lecture note.)
 Check if the following holds:

$$\mathcal{R} = \langle A + BF | \text{Im } B \cap \mathcal{R} \rangle$$

where F is an arbitrary friend of \mathcal{R} .

• Suppose that \mathcal{R} is a reachability subspace. How can we construct G? (To obtain a friend F of \mathcal{R} , see the note for Exercise Session 1.)

We find $G \in \mathbb{R}^{m \times m}$ that satisfies

Im
$$B \cap \mathcal{R} = \text{Im } BG$$
.

Suppose that Im $B \cap \mathcal{R}$ is a subspace spanned by linearly independent column vectors p_1, \dots, p_r $(p_i \in \mathbb{R}^n)$. Then, we can obtain linearly independent vectors u_1, \dots, u_r $(u_i \in \mathbb{R}^m)$ such that

$$\left[\begin{array}{ccc} p_1 & \cdots & p_r \end{array}\right] = B \left[\begin{array}{ccc} u_1 & \cdots & u_r \end{array}\right].$$

Choose u_{r+1}, \dots, u_m so that $\{u_i\}_{i=1}^m$ is a basis for \mathbb{R}^m . If we take

$$G := \left[\begin{array}{ccccc} u_1 & \cdots & u_r & 0 & \cdots & 0 \end{array} \right] \left[\begin{array}{cccccc} u_1 & u_2 & \cdots & u_m \end{array} \right]^{-1},$$

then

and hence Im $B \cap \mathcal{R} = \text{Im } BG$ holds.

Note. If Im $B \cap \mathcal{R}$ is spanned by a subset of columns of B, then it is VERY EASY to construct G satisfying Im $B \cap \mathcal{R} = \text{Im } BG$. Suppose that Im $B \cap \mathcal{R}$ becomes a span of some subset of $\{b_j\}_{j=1}^m$. If Im $B \cap \mathcal{R} = \text{span} \{b_{k_1}, \dots, b_{k_p}\}$, then we choose G as a diagonal matrix with one at (k_j, k_j) -elements for $j = 1, \dots, p$ and with zero at other elements.

 How can we construct the maximal reachability subspace R* contained in a given subspace Z? (See Theorem 2.8 in page 15 in the lecture note.)

$$\mathcal{R}^* = \langle A + BF | \text{Im } B \cap \mathcal{S}^*(\mathcal{Z}) \rangle,$$

 $\begin{aligned} \mathcal{S}^*(\mathcal{Z}) &: \text{maximal } (A,B)\text{-invariant subspace in } \mathcal{Z}, \\ F &: \text{a friend of } \mathcal{S}^*. \end{aligned}$

Hence, to obtain \mathcal{R}^* , we need $\mathcal{S}^*(\mathcal{Z})$. In the next section, we consider $\mathcal{Z} = \ker C$ (which is typical in control problems in this course), and explain the procedure to derive $\mathcal{V}^* := \mathcal{S}^*(\ker C)$.

Problem (Reachability subspace)

Suppose that

A :=	1 1 0	$\begin{array}{c} 0 \\ 1 \\ 1 \end{array}$	$\begin{array}{c} 0 \\ 0 \\ 1 \end{array}$, B :=	$\begin{bmatrix} 0\\0\\1 \end{bmatrix}$	$\begin{array}{c} 0 \\ 1 \\ 0 \end{array}$.
	Lĭ	-			LŤ	Ŭ -	

Is $S := \text{span} \{e_2\}$ (A, B)-invariant? Is S a reachability subspace?

$\textbf{2} \quad \textbf{Computing} \ \mathcal{V}^*$

Given matrices A, B and C, the maximal (A, B)-invariant subspace in ker C, denoted by \mathcal{V}^* , can be obtained by two procedures.

Method 1: \mathcal{V}^* -algorithm

Step 0: Form a matrix V_0 whose columns are a basis of ker C. Set i = 0.

Step 1: Obtain a matrix Z_i , with the maximal number of linearly independent row vectors, satisfying

$$Z_i \left[\begin{array}{cc} V_i & B \end{array} \right] = 0$$

Step 2: Obtain a matrix V_{i+1} , with the maximal number of column vectors, satisfying

$$\left[\begin{array}{c} C\\ Z_i A \end{array}\right] V_{i+1} = 0$$

Step 3: If the two subspaces \mathcal{V}_i and \mathcal{V}_{i+1} , spanned by the columns V_i and V_{i+1} respectively, coincide, then stop. (Note that it may happen that V_i and V_{i+1} are different but $\mathcal{V}_i = \mathcal{V}_{i+1}$) Denoting the columns by $\{v_j\}_{j=1}^p$,

$$\mathcal{V}^* = \operatorname{span} \{v_1, \cdots, v_p\}.$$

Otherwise, increment i by one and go back to Step 1.

Note that this algorithm will converge in a finite step, due to Theorem 3.3 in page 23 in the lecture note.

Method 2: Ω^* -algorithm

Denote G = ImB.

Step 0: $\Omega_0 = Span\{C\},\$

Step k: $\Omega_k = \Omega_{k-1} + L_{Ax}(\Omega_{k-1} \cap G^{\perp})$. Where $L_{Ax}(\Omega_{k-1} \cap G^{\perp})$ is the span of all row vectors ωA where $\omega \in \Omega_{k-1} \cap G^{\perp}$.

If there is a k^* such that $\Omega_{k^*+1} = \Omega_{k^*}$, then

$$\mathcal{V}^* = \Omega_{k^*}^{\perp}.$$

Example

For the following (A, B, C), compute the maximal (A, B)-invariant subspace in ker C.

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & -1 & -1 \\ 0 & 0 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 & 1 \\ 1 & 0 \\ -2 & -1 \end{bmatrix}, C = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}.$$

Method 1: \mathcal{V}^* -algorithm

Step 0: First, compute ker C.

$$\ker C = \left\{ x \in R^3 : Cx = 0 \right\} \\ = \left\{ x \in R^3 : x_1 + x_2 + x_3 = 0 \right\} \\ = \left\{ \begin{bmatrix} x_1 \\ x_2 \\ -x_1 - x_2 \end{bmatrix} : x_1 \in R, \ x_2 \in R \right\} \\ = \operatorname{span} \left\{ \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix} \right\} =: \mathcal{V}_0.$$

Therefore,

$$V_0 = \left[\begin{array}{rrr} 1 & 0 \\ 0 & 1 \\ -1 & -1 \end{array} \right]$$

Step 1: Solve $Z_0 \begin{bmatrix} V_0 & B \end{bmatrix} = 0$ for Z_0 .

$$Z_0 \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ -1 & -1 & -2 & -1 \end{bmatrix} = 0 \implies Z_0 = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

Step 2: Solve $\begin{bmatrix} C \\ Z_0 A \end{bmatrix} V_1 = 0$ for V_1 .

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \end{bmatrix} V_1 = 0 \implies V_1 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$$

Step 3: Since $\mathcal{V}_1 := \text{span} \{V_1\}$ is different from \mathcal{V}_0 , go back to Step 1. **Step 1-2:** Solve $Z_1 \begin{bmatrix} V_1 & B \end{bmatrix} = 0$ for Z_1 .

$$Z_1 \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ -1 & -2 \end{bmatrix} = 0 \implies Z_1 = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

Step 2-2: Solve $\begin{bmatrix} C \\ Z_1A \end{bmatrix} V_2 = 0$ for V_2 . Then, $V_2 = V_1$.

Step 3-2: Since $\mathcal{V}_2 := \operatorname{span} \{V_2\}$ equals to \mathcal{V}_1 ,

$$\mathcal{V}^* = \mathcal{V}_1 = \operatorname{span} \left\{ \begin{bmatrix} 1\\ 0\\ -1 \end{bmatrix} \right\}.$$

Method 2: Ω^* -algorithm

$$G = ImB = \begin{bmatrix} 1 & 1\\ 1 & 0\\ -2 & -1 \end{bmatrix} \Rightarrow G^{\perp} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

Step 0: $\Omega_0 = Span\{C\} = Span\{\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}\},\$

Step 1:
$$\Omega_1 = \Omega_0 + L_{Ax}(\Omega_0 \cap G^{\perp}).$$

 $\Omega_0 \cap G^{\perp} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} = w$
 $wA = \begin{bmatrix} 1 & -1 & 1 \end{bmatrix}, \Rightarrow L_{Ax}(\Omega_0 \cap G^{\perp}) = Span \begin{bmatrix} 1 & -1 & 1 \end{bmatrix}$
So $\Omega_1 = \Omega_0 + L_{Ax}(\Omega_0 \cap G^{\perp}) = Span \left\{ \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & -1 & 1 \end{bmatrix} \right\}$

Step 2: $\Omega_1 \cap G^{\perp} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} = w$, Therefore, we have $\Omega_2 = \Omega_1$, so $\Omega^* = \Omega_1$

]}

Then
$$\mathcal{V}^*$$
 is computed as $\mathcal{V}^* = \Omega^{*\perp} = Span \left\{ \begin{bmatrix} 1\\0\\-1 \end{bmatrix} \right\}.$

What is the maximal reachability subspace \mathcal{R}^* in this example? To compute \mathcal{R}^* , we need a friend F of \mathcal{V}^* . Since

$$A\underbrace{\begin{bmatrix}1\\0\\-1\end{bmatrix}}_{V} = \begin{bmatrix}0\\1\\-1\end{bmatrix} = \underbrace{\begin{bmatrix}1\\0\\-1\end{bmatrix}}_{V}\underbrace{(-1)}_{K} + \underbrace{\begin{bmatrix}1&1\\1&0\\-2&-1\end{bmatrix}}_{B}\underbrace{\begin{bmatrix}1\\0\end{bmatrix}}_{U},$$

by solving FV = -U, we obtain a solution

$$F = \left[\begin{array}{rrr} 0 & 0 & 1 \\ 0 & 0 & 0 \end{array} \right].$$

Therefore,

$$\mathcal{R}^* = \langle A + BF | \operatorname{Im} B \cap \mathcal{V}^* \rangle$$

$$= \left\langle \left[\begin{array}{ccc} 1 & 0 & 2 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{array} \right] \right| \operatorname{Im} \left[\begin{array}{c} 1 \\ 0 \\ -1 \end{array} \right] \right\rangle = \operatorname{Im} \left[\begin{array}{c} 1 \\ 0 \\ -1 \end{array} \right].$$

From the definition of a reachability subspace, there is a G satisfying

$$\mathcal{R}^* = \langle A + BF | \text{Im } BG \rangle.$$

How can we obtain G? We aim at choosing G with

$$\operatorname{Im} B \cap \mathcal{R}^* = \operatorname{Im} BG.$$

We achieve this relation with $G = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$.

Problem (Finding \mathcal{V}^*)

For the following (A, B, C), compute \mathcal{V}^* .

3 Relative degree and normal form

Relative degree (Square MIMO case)

Suppose that (A, B, C) is minimal and that B and C have linearly independent columns and rows, respectively. System

$$\begin{cases} \dot{x} = Ax + Bu \\ y = \begin{bmatrix} c_1 \\ \vdots \\ c_m \end{bmatrix} x, \ c_i \in R^{1 \times n} \end{cases}$$

with *m*-inputs $(u \in \mathbb{R}^m)$ and *m*-outputs $(y \in \mathbb{R}^m)$ has relative degree (r_1, \dots, r_m) if for $i = 1, \dots, m$,

$$c_i A^j B = 0_{1 \times m}, \qquad j = 0, 1, \dots, r_i - 2$$

 $c_i A^{r_i - 1} B \neq 0_{1 \times m},$

and the matrix

$$L := \begin{bmatrix} c_1 A^{r_1 - 1} B\\ \vdots\\ c_m A^{r_m - 1} B \end{bmatrix}$$

is nonsingular.

Example (Relative degree)

$$A = \begin{bmatrix} -1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & -1 \end{bmatrix}, B = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}, C = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix}.$$

For c_1 ,

$$c_1 B = \begin{bmatrix} 0 & 0 \end{bmatrix}$$

$$c_1 A B = \begin{bmatrix} 0 & 1 \end{bmatrix} \neq \begin{bmatrix} 0 & 0 \end{bmatrix} \implies r_1 = 2$$

For c_2 ,

$$c_2 B = \begin{bmatrix} 1 & 1 \end{bmatrix} \neq \begin{bmatrix} 0 & 0 \end{bmatrix} \implies r_2 = 1$$

The matrix L becomes

$$L := \left[\begin{array}{c} c_1 AB \\ c_2 B \end{array} \right] = \left[\begin{array}{c} 0 & 1 \\ 1 & 1 \end{array} \right],$$

and it is clear that L is nonsingular. Hence, the system has relative degree

$$(r_1, r_2) = (2, 1).$$

Normal form

Once we have obtained relative degree, we can change coordinates of the system to transform it into a normal form.

$$\begin{cases} \dot{z} = Nz + P\xi \\ \dot{\xi}_{1}^{i} = \xi_{2}^{i} \\ \dot{\xi}_{2}^{i} = \xi_{3}^{i} \\ \vdots \\ \dot{\xi}_{r_{i}-1}^{i} = \xi_{r_{i}}^{i} \\ \xi_{r_{i}}^{i} = R_{i}z + S_{i}\xi + c_{i}A^{r_{i}-1}Bu \\ y_{i} = \xi_{1}^{i}, \quad i = 1, \dots, m. \end{cases}$$

Normal form is useful in obtaining zero dynamics and in solving several control problems (see Chapter 5 in the lecture note).

First, choose the new states as follows.

Note that $\xi \in R^{(r_1 + \dots + r_m)}$. Since $x \in R^n$, for the coordinate change, we need to add another $n - (r_1 + \dots + r_m)$ states. We choose these states as

 $z := T_z x,$

where T_z is a matrix of size $(n - (r_1 + \dots + r_m)) \times n$ and satisfies

• $T_z B = 0$ • $T := \begin{bmatrix} T_z \\ T_\xi \end{bmatrix}$ is nonsingular.

Why is such a choice of T_z possible? Since the columns of B span m dimensional subspace Im B in \mathbb{R}^n , there is an (n-m) dimensional subspace \mathcal{W} which is orthogonal to Im B, i.e.,

$$R^n = \operatorname{Im} B + \mathcal{W}, \ \mathcal{W} \perp \operatorname{Im} B.$$

In T_{ξ} , there are $((r_1 - 1) + \cdots + (r_m - 1)) = (r_1 + \cdots + r_m - m)$ linearly independent row vectors in \mathcal{W} . Therefore, we can choose another

$$n - m - (r_1 + \dots + r_m - m) = n - (r_1 + \dots + r_m)$$

linearly independent row vectors in \mathcal{W} .

The new state vector is

$$\begin{bmatrix} z\\ \xi \end{bmatrix} = \underbrace{\begin{bmatrix} T_z\\ T_\xi \end{bmatrix}}_{=:T} x.$$

Therefore,

$$\begin{bmatrix} \dot{z} \\ \dot{\xi} \end{bmatrix} = T\dot{x}$$

= $T(Ax + Bu)$
= $TAT^{-1}\begin{bmatrix} z \\ \xi \\ \xi \end{bmatrix} + TBu$
= $TAT^{-1}\begin{bmatrix} z \\ \xi \end{bmatrix} + \begin{bmatrix} 0 \\ T_{\xi}B \end{bmatrix} u$ (since $T_{z}B = 0$),
 $y = Cx = \begin{bmatrix} c_{1} \\ \vdots \\ c_{m} \end{bmatrix} x = \begin{bmatrix} \xi_{1}^{1} \\ \vdots \\ \xi_{1}^{m} \end{bmatrix}$.

Here, TAT^{-1} and $T_{\xi}B$ have special structures.

Example (Normal form)

Consider the same system as before, i.e.,

$$A = \begin{bmatrix} -1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & -1 \end{bmatrix}, B = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}, C = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix}.$$

Relative degree is (2,1). So, we choose the new states as

$$\xi := \begin{bmatrix} \xi_1^1 \\ \xi_2^1 \\ \xi_1^2 \\ \xi_1^2 \end{bmatrix} := \begin{bmatrix} c_1 \\ c_1 A \\ c_2 \end{bmatrix} x = \begin{bmatrix} 1 & 1 & 0 & 0 \\ -1 & 2 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix} x.$$

By adding another state $z := \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} x$,

$$\begin{bmatrix} \dot{z} \\ \dot{\xi} \end{bmatrix} = \begin{bmatrix} 1 & -1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ -9 & 7 & -3 & 1 \\ -5 & 3 & -1 & 2 \end{bmatrix} \begin{bmatrix} z \\ \xi \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix} u,$$
$$y = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} z \\ \xi \end{bmatrix}.$$

or equivalently,

$$\dot{z} = \underbrace{1}_{N} \cdot z + \underbrace{\begin{bmatrix} -1 & 1 & 0 \end{bmatrix}}_{P} \xi$$

$$\dot{\xi}_{1}^{1} = \xi_{2}^{1}$$

$$\dot{\xi}_{2}^{1} = \underbrace{-9}_{R_{1}} z + \underbrace{\begin{bmatrix} 7 & -3 & 1 \end{bmatrix}}_{S_{1}} \xi + \underbrace{\begin{bmatrix} 0 & 1 \end{bmatrix}}_{c_{1}AB} u$$

$$y_{1} = \xi_{1}^{1}$$

$$\dot{\xi}_{1}^{2} = \underbrace{-5}_{R_{2}} z + \underbrace{\begin{bmatrix} 3 & -1 & 2 \end{bmatrix}}_{S_{2}} \xi + \underbrace{\begin{bmatrix} 1 & 1 \end{bmatrix}}_{c_{2}B} u$$

$$y_{2} = \xi_{1}^{2}$$