
Mathematical Systems Theory: Advanced Course

Exercise Session 3

1 Transmission zero

Consider a system

(Σ)

{
ẋ = Ax + Bu
y = Cx,

where x ∈ Rn, u ∈ Rm and y ∈ Rp, B and C are column and row full rank
respectively, and (A,B,C) is minimal. A complex number s0 is called a
transmission zero if

rankPΣ(s0) < n + min(m, p), PΣ(s) :=

[
sI − A B
−C 0

]
.

How can we compute transmission zeros?

The case where p = m: Solve

detPΣ(s) = 0

with respect to s.

The case where p < m (p > m): Solve

detPΣ(s)PΣ(s)T = 0 (det PΣ(s)T PΣ(s) = 0)

with respect to s. Note that PΣ(s)PΣ(s)T (PΣ(s)T PΣ(s)) is a square
matrix.

Note. In Matlab, the command tzero.m computes transmission zeros.

Examples

Square system (A,B,C)

A =

⎡
⎢⎣ 1 0 1

0 −1 2
0 0 0

⎤
⎥⎦ , B =

⎡
⎢⎣ 0 0

0 1
1 0

⎤
⎥⎦ , C =

[
0 0 1
1 1 0

]

Compute transmission zeros.
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Form a system matrix PΣ:

PΣ(s) :=

[
sI − A B
−C 0

]
=

⎡
⎢⎢⎢⎢⎢⎣

s − 1 0 −1 0 0
0 s + 1 −2 0 1
0 0 s 1 0
0 0 −1 0 0
−1 −1 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

detPΣ(s) = (s − 1) det

⎡
⎢⎢⎢⎣

s + 1 −2 0 1
0 s 1 0
0 −1 0 0
−1 0 0 0

⎤
⎥⎥⎥⎦ − det

⎡
⎢⎢⎢⎣

0 −1 0 0
s + 1 −2 0 1

0 s 1 0
0 −1 0 0

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
=0

= (s − 1)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(s + 1) det

⎡
⎢⎣ s 1 0

−1 0 0
0 0 0

⎤
⎥⎦

︸ ︷︷ ︸
=0

+ det

⎡
⎢⎣ −2 0 1

s 1 0
−1 0 0

⎤
⎥⎦
⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

= s − 1

From det PΣ(s) = 0, we obtain a transmission zero s = 1.

Square system (A,B,C,D)

We consider here a system of the form

(Σ̄)

{
ẋ = Ax + Bu
y = Cx + Du,

with

A =

[
−2 0
0 0

]
B =

[
−2 0
0 2

]
, C =

[
1 0
0 1

]
, D =

[
1 0
0 1

]
,

For such a system, the Rosenbrock matrix PΣ̄ is of the form:

PΣ̄(s) :=

[
sI − A B
−C D

]
=

⎡
⎢⎢⎢⎣

s + 2 0 −2 0
0 s 0 2
−1 0 1 0
0 −1 0 1

⎤
⎥⎥⎥⎦

detPΣ̄(s) = (s + 2) det

⎡
⎢⎣ s 0 2

0 1 0
−1 0 1

⎤
⎥⎦ − 1 · det

⎡
⎢⎣ 0 −2 0

s 0 2
−1 0 1

⎤
⎥⎦

= (s + 2)(s + 2) − 1 · 2(s + 2) = (s + 2) · s
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Taking detPΣ̄(s)=0 the transmission zeros are s = 0 and s = −2. Notice
that these are also eigenvalues of the matrix A, so the transmission zeros
and the poles of the system Σ̄ are equal in this example.

Non-Square system (A,B,C)

A =

[
0 1
−1 −2

]
, B =

[
0 0
1 1

]
, C =

[
1 1

]
.

The corresponding system matrix is

PΣ(s) :=

[
sI − A B
−C 0

]
=

⎡
⎢⎣ s −1 0 0

1 s + 2 1 1
−1 −1 0 0

⎤
⎥⎦ .

To compute transmission zeros, we form PΣ(s)PΣ(s)T :

PΣ(s)PΣ(s)T =

⎡
⎢⎣ s2 + 1 −2 −s + 1

−2 s2 + 4s + 7 −s − 3
−s + 1 −s − 3 2

⎤
⎥⎦ .

The determinant of this matrix is calculated as

det PΣ(s)PΣ(s)T = · · · = 2(s + 1)2.

Hence, by setting detPΣ(s)PΣ(s)T = 0, we obtain a transmission zero as
s = −1.

Problem

Compute (both by hand and with computer) transmission zeros of the sys-
tem with the following (A,B,C).

A =

⎡
⎢⎣ 1 2 3

0 2 1
0 0 3

⎤
⎥⎦ , B =

⎡
⎢⎣ 1 0

1 0
1 1

⎤
⎥⎦ , C =

[
1 0 0
1 1 1

]
.

2 High gain control

Here, we will give one example of high gain control.
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Example

Consider the following system:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ż = −αz + ξ1

ξ̇1 = ξ2

ξ̇2 = βz + u
y = ξ1

In the system, suppose that α is a positive constant but unknown and that
β is unknown. From the lecture note, page 38-39, the following control will
stabilize the closed-loop system for sufficiently large k:

u = −3kξ2 − 2k2ξ1.

The poles of the closed-loop system are shown in the figure below for
several k from k = 0.1 to k = 1. (α and β are set to one.) We can see that
large k stabilizes the closed-loop system.
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3 Noninteracting control

Given a square system

(Σ)

{
ẋ = Ax + Bu
y = Cx,

where B and C have linearly independent columns rows respectively. Find
a control u = Fx + Gv such that
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1. the closed-loop system{
ẋ = (A + BF )x + BGv
y = Cx

has relative degree (r1, · · · , rm), and

2. the i-th output yi is influenced by only the i-th input vi.

Solvability condition

The static noninteracting control problem is solvable if and only if the system
(Σ) has some relative degree.

How to obtain a solution u?

To obtain a solution u if the problem is solvable, we transform the system
(Σ) into a normal form. Then,

u = L−1(−Rz − Sξ + v).

By this control, we obtain⎡
⎢⎢⎣

ξ̇1
r1
...

ξ̇m
rm

⎤
⎥⎥⎦ =

⎡
⎢⎣

R1
...

Rm

⎤
⎥⎦

︸ ︷︷ ︸
R

z +

⎡
⎢⎣

S1
...

Sm

⎤
⎥⎦

︸ ︷︷ ︸
S

ξ +

⎡
⎢⎣

c1A
r1−1B
...

cmArm−1B

⎤
⎥⎦

︸ ︷︷ ︸
L

u = v,

and hence ξ1
i can be controlled by vi for each i.

4 Tracking with stability

Consider the same system as above. Find a control u(t) = Fx(t) + D(t)
such that

1. the output y(t) tracks asymptotically the reference signal yd(t)

2. the state x(t) is bounded.
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Solvability

The tracking problem with stability is solvable if

• the system (Σ) has some relative degree (r1, · · · , rm)

• the zero dynamics is asymptotically stable

• for each i = 1, . . . ,m,

yi
d, y

i(1)
d , · · · , yi(ri−1)

d

are bounded.

How to obtain a solution u if the problem is solvable?

u(t) = L−1

⎛
⎜⎜⎝−Rz − Sξ +

⎡
⎢⎢⎣

y
1(r1)
d
...

y
m(rm)
d

⎤
⎥⎥⎦ + v(t)

⎞
⎟⎟⎠ ,

where v(t) is chosen so that the closed-loop system becomes asymptotically
stable.

Example

Consider the following system which is already in a normal form:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ż = −1︸︷︷︸
N

·z +
[

1 1 1
]

︸ ︷︷ ︸
P

ξ

ξ̇1
1 = ξ1

2

ξ̇1
2 = 1︸︷︷︸

R1

·z +
[

1 2 0
]

︸ ︷︷ ︸
S1

ξ +
[

2 1
]
u

ξ̇2
1 = 2︸︷︷︸

R2

·z +
[

0 1 1
]

︸ ︷︷ ︸
S2

ξ +
[

1 2
]
u

y1 = ξ1
1

y2 = ξ2
1

In this case,

L :=

[
2 1
1 2

]
, R :=

[
1
2

]
, S :=

[
1 2 0
0 1 1

]
,
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Assume that the reference signal yd is given by

yd(t) :=

[
cos ωt
sin ωt

]
.

We can check that

• The relative degree of this system is (r1, r2) = (2, 1).

• The zero dynamics is asymptotically stable (N=-1)

• y1
d = cos ωt, y

1(r1−1)
d = y

1(1)
d = − sin ωt, y

2(r2−1)
d = y2

d = sinωt are
bounded

By using the control

u(t) = L−1

⎛
⎜⎜⎝−Rz − Sξ +

⎡
⎢⎢⎣

y
1(r1)
d
...

y
m(rm)
d

⎤
⎥⎥⎦ + v(t)

⎞
⎟⎟⎠ ,

We get that: [
ξ̇1
2

ξ̇2
1

]
=

[
y

1(2)
d + v1

y
2(1)
d + v2

]

Defining the tracking errors as in page 44 in the lecture notes,

ei
j = ciA

j−1x − y
i(j−1)
d = ξi

j − y
i(j−1)
d i = 1 · · ·m, j = 1 · · · ri

we get ⎡
⎢⎣ e1

1

e1
2

e2
1

⎤
⎥⎦ =

⎡
⎢⎢⎣

ξ1
1 − y

1(0)
d

ξ1
2 − y

1(1)
d

ξ2
1 − y

2(0)
d

⎤
⎥⎥⎦

which implies ⎡
⎢⎣ ė1

1

ė1
2

ė2
1

⎤
⎥⎦ =

⎡
⎢⎢⎣

ξ̇1
1 − y

1(1)
d

ξ̇1
2 − y

1(2)
d

ξ̇2
1 − y

2(1)
d

⎤
⎥⎥⎦ =

⎡
⎢⎣ e1

2

v1

v2

⎤
⎥⎦
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we obtain the closed-loop system (Yd is defined in the lecture notes page
44): ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ż = Nz + Pe + PYd[
ė1
1

ė1
2

]
=

[
0 1
0 0

] [
e1
1

e1
2

]
+

[
0
1

]
v1

ė2
1 = v2

y1 = ξ1

y2 = ξ2

If we choose v such that the closed-loop system become asymptotically sta-
ble, for example

v1 =
[
−2 −3

] [
e1
1

e1
2

]
v2 = −e2

1,

we can check that the tracking problem with stability is solved since

1. e(t) → 0 as t → ∞, since the closed-loop system is asymptotically
stable

2. z is bounded since N = −1 is a stable matrix (scalar) and ξ is bounded
since y1

d, y
1(1)
d , y

2(1)
d are bounded, so x(t) is bounded.

8


