Mathematical Systems Theory: Advanced Course Exercise Session 3

1 Transmission zero

Consider a system

$$
(\Sigma)\left\{\begin{array}{l}
\dot{x}=A x+B u \\
y=C x,
\end{array}\right.
$$

where $x \in R^{n}, u \in R^{m}$ and $y \in R^{p}, B$ and C are column and row full rank respectively, and (A, B, C) is minimal. A complex number s_{0} is called a transmission zero if

$$
\operatorname{rank} P_{\Sigma}\left(s_{0}\right)<n+\min (m, p), P_{\Sigma}(s):=\left[\begin{array}{cc}
s I-A & B \\
-C & 0
\end{array}\right] .
$$

How can we compute transmission zeros?
The case where $p=m$: Solve

$$
\operatorname{det} P_{\Sigma}(s)=0
$$

with respect to s.
The case where $p<m(p>m)$: Solve

$$
\operatorname{det} P_{\Sigma}(s) P_{\Sigma}(s)^{T}=0 \quad\left(\operatorname{det} P_{\Sigma}(s)^{T} P_{\Sigma}(s)=0\right)
$$

with respect to s. Note that $P_{\Sigma}(s) P_{\Sigma}(s)^{T}\left(P_{\Sigma}(s)^{T} P_{\Sigma}(s)\right)$ is a square matrix.

Note. In Matlab, the command tzero.m computes transmission zeros.

Examples

Square system (A,B,C)

$$
A=\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & -1 & 2 \\
0 & 0 & 0
\end{array}\right], B=\left[\begin{array}{ll}
0 & 0 \\
0 & 1 \\
1 & 0
\end{array}\right], C=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 1 & 0
\end{array}\right]
$$

Compute transmission zeros.

Form a system matrix P_{Σ} :

$$
\begin{aligned}
& P_{\Sigma}(s):=\left[\begin{array}{cc}
s I-A & B \\
-C & 0
\end{array}\right]=\left[\begin{array}{ccccc}
s-1 & 0 & -1 & 0 & 0 \\
0 & s+1 & -2 & 0 & 1 \\
0 & 0 & s & 1 & 0 \\
0 & 0 & -1 & 0 & 0 \\
-1 & -1 & 0 & 0 & 0
\end{array}\right] \\
& \operatorname{det} P_{\Sigma}(s)=(s-1) \operatorname{det}\left[\begin{array}{cccc}
s+1 & -2 & 0 & 1 \\
0 & s & 1 & 0 \\
0 & -1 & 0 & 0 \\
-1 & 0 & 0 & 0
\end{array}\right]-\underbrace{\operatorname{det}}_{=0}\left[\begin{array}{cccc}
0 & -1 & 0 & 0 \\
s+1 & -2 & 0 & 1 \\
0 & s & 1 & 0 \\
0 & -1 & 0 & 0
\end{array}\right] \\
& =(s-1)\{(s+1) \underbrace{\operatorname{det}\left[\begin{array}{ccc}
s & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]}_{=0}+\operatorname{det}\left[\begin{array}{ccc}
-2 & 0 & 1 \\
s & 1 & 0 \\
-1 & 0 & 0
\end{array}\right]\} \\
& =s-1
\end{aligned}
$$

From $\operatorname{det} P_{\Sigma}(s)=0$, we obtain a transmission zero $s=1$.

Square system (A,B,C,D)

We consider here a system of the form

$$
\begin{gathered}
(\bar{\Sigma})\left\{\begin{array}{ll}
\dot{x}=A x+B u \\
y=C x+D u,
\end{array}\right. \text { with } \\
A=\left[\begin{array}{cc}
-2 & 0 \\
0 & 0
\end{array}\right] B=\left[\begin{array}{cc}
-2 & 0 \\
0 & 2
\end{array}\right], C=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], D=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],
\end{gathered}
$$

For such a system, the Rosenbrock matrix $P_{\bar{\Sigma}}$ is of the form:

$$
\begin{aligned}
& P_{\bar{\Sigma}}(s):=\left[\begin{array}{cc}
s I-A & B \\
-C & D
\end{array}\right]=\left[\begin{array}{cccc}
s+2 & 0 & -2 & 0 \\
0 & s & 0 & 2 \\
-1 & 0 & 1 & 0 \\
0 & -1 & 0 & 1
\end{array}\right] \\
& \operatorname{det} P_{\bar{\Sigma}}(s)=(s+2) \operatorname{det}\left[\begin{array}{ccc}
s & 0 & 2 \\
0 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right]-1 \cdot \operatorname{det}\left[\begin{array}{ccc}
0 & -2 & 0 \\
s & 0 & 2 \\
-1 & 0 & 1
\end{array}\right] \\
& =(s+2)(s+2)-1 \cdot 2(s+2)=(s+2) \cdot s
\end{aligned}
$$

Taking $\operatorname{det} P_{\bar{\Sigma}(s)=0}$ the transmission zeros are $s=0$ and $s=-2$. Notice that these are also eigenvalues of the matrix A, so the transmission zeros and the poles of the system $\bar{\Sigma}$ are equal in this example.

Non-Square system (A,B,C)

$$
A=\left[\begin{array}{cc}
0 & 1 \\
-1 & -2
\end{array}\right], B=\left[\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right], C=\left[\begin{array}{ll}
1 & 1
\end{array}\right]
$$

The corresponding system matrix is

$$
P_{\Sigma}(s):=\left[\begin{array}{cc}
s I-A & B \\
-C & 0
\end{array}\right]=\left[\begin{array}{cccc}
s & -1 & 0 & 0 \\
1 & s+2 & 1 & 1 \\
-1 & -1 & 0 & 0
\end{array}\right]
$$

To compute transmission zeros, we form $P_{\Sigma}(s) P_{\Sigma}(s)^{T}$:

$$
P_{\Sigma}(s) P_{\Sigma}(s)^{T}=\left[\begin{array}{ccc}
s^{2}+1 & -2 & -s+1 \\
-2 & s^{2}+4 s+7 & -s-3 \\
-s+1 & -s-3 & 2
\end{array}\right]
$$

The determinant of this matrix is calculated as

$$
\operatorname{det} P_{\Sigma}(s) P_{\Sigma}(s)^{T}=\cdots=2(s+1)^{2}
$$

Hence, by setting $\operatorname{det} P_{\Sigma}(s) P_{\Sigma}(s)^{T}=0$, we obtain a transmission zero as $s=-1$.

Problem

Compute (both by hand and with computer) transmission zeros of the system with the following (A, B, C).

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 2 & 1 \\
0 & 0 & 3
\end{array}\right], B=\left[\begin{array}{ll}
1 & 0 \\
1 & 0 \\
1 & 1
\end{array}\right], C=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 1
\end{array}\right]
$$

2 High gain control

Here, we will give one example of high gain control.

Example

Consider the following system:

$$
\left\{\begin{aligned}
\dot{z} & =-\alpha z+\xi_{1} \\
\dot{\xi_{1}} & =\xi_{2} \\
\dot{\xi}_{2} & =\beta z+u \\
y & =\xi_{1}
\end{aligned}\right.
$$

In the system, suppose that α is a positive constant but unknown and that β is unknown. From the lecture note, page $38-39$, the following control will stabilize the closed-loop system for sufficiently large k :

$$
u=-3 k \xi_{2}-2 k^{2} \xi_{1}
$$

The poles of the closed-loop system are shown in the figure below for several k from $k=0.1$ to $k=1$. (α and β are set to one.) We can see that large k stabilizes the closed-loop system.

3 Noninteracting control

Given a square system

$$
(\Sigma)\left\{\begin{array}{l}
\dot{x}=A x+B u \\
y=C x
\end{array}\right.
$$

where B and C have linearly independent columns rows respectively. Find a control $u=F x+G v$ such that

1. the closed-loop system

$$
\left\{\begin{array}{l}
\dot{x}=(A+B F) x+B G v \\
y=C x
\end{array}\right.
$$

has relative degree $\left(r_{1}, \cdots, r_{m}\right)$, and
2. the i-th output y_{i} is influenced by only the i-th input v_{i}.

Solvability condition

The static noninteracting control problem is solvable if and only if the system (Σ) has some relative degree.

How to obtain a solution u ?

To obtain a solution u if the problem is solvable, we transform the system (Σ) into a normal form. Then,

$$
u=L^{-1}(-R z-S \xi+v)
$$

By this control, we obtain

$$
\left[\begin{array}{c}
\dot{\xi}_{r_{1}}^{1} \\
\vdots \\
\dot{\xi}_{r_{m}}^{m}
\end{array}\right]=\underbrace{\left[\begin{array}{c}
R_{1} \\
\vdots \\
R_{m}
\end{array}\right]}_{R} z+\underbrace{\left[\begin{array}{c}
S_{1} \\
\vdots \\
S_{m}
\end{array}\right]}_{S} \xi+\underbrace{\left[\begin{array}{c}
c_{1} A^{r_{1}-1} B \\
\vdots \\
c_{m} A^{r_{m}-1} B
\end{array}\right]}_{L} u=v,
$$

and hence ξ_{i}^{1} can be controlled by v_{i} for each i.

4 Tracking with stability

Consider the same system as above. Find a control $u(t)=F x(t)+D(t)$ such that

1. the output $y(t)$ tracks asymptotically the reference signal $y_{d}(t)$
2. the state $x(t)$ is bounded.

Solvability

The tracking problem with stability is solvable if

- the system (Σ) has some relative degree $\left(r_{1}, \cdots, r_{m}\right)$
- the zero dynamics is asymptotically stable
- for each $i=1, \ldots, m$,

$$
y_{d}^{i}, y_{d}^{i(1)}, \cdots, y_{d}^{i\left(r_{i}-1\right)}
$$

are bounded.
How to obtain a solution u if the problem is solvable?

$$
u(t)=L^{-1}\left(-R z-S \xi+\left[\begin{array}{c}
y_{d}^{1\left(r_{1}\right)} \\
\vdots \\
y_{d}^{m\left(r_{m}\right)}
\end{array}\right]+v(t)\right),
$$

where $v(t)$ is chosen so that the closed-loop system becomes asymptotically stable.

Example

Consider the following system which is already in a normal form:

$$
\left\{\begin{aligned}
\dot{z} & =\underbrace{-1}_{N} \cdot z+\underbrace{\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right]}_{P} \xi \\
\dot{\xi}_{1}^{1} & =\xi_{2}^{1} \\
\dot{\xi}_{2}^{1} & =\underbrace{1}_{R_{1}} \cdot z+\underbrace{\left[\begin{array}{lll}
1 & 2 & 0
\end{array}\right]}_{S_{1}} \xi+\left[\begin{array}{ll}
2 & 1
\end{array}\right] u \\
\dot{\xi}_{1}^{2} & =\underbrace{2}_{R_{2}} \cdot z+\underbrace{\left[\begin{array}{ll}
0 & 1 \\
0
\end{array}\right]}_{S_{2}} \xi+\left[\begin{array}{ll}
1 & 2
\end{array}\right] u \\
y_{1} & =\xi_{1}^{1} \\
y_{2} & =\xi_{1}^{2}
\end{aligned}\right.
$$

In this case,

$$
L:=\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right], R:=\left[\begin{array}{l}
1 \\
2
\end{array}\right], S:=\left[\begin{array}{lll}
1 & 2 & 0 \\
0 & 1 & 1
\end{array}\right]
$$

Assume that the reference signal y_{d} is given by

$$
y_{d}(t):=\left[\begin{array}{c}
\cos \omega t \\
\sin \omega t
\end{array}\right]
$$

We can check that

- The relative degree of this system is $\left(r_{1}, r_{2}\right)=(2,1)$.
- The zero dynamics is asymptotically stable $(\mathrm{N}=-1)$
- $y_{d}^{1}=\cos \omega t, y_{d}^{1\left(r_{1}-1\right)}=y_{d}^{1(1)}=-\sin \omega t, y_{d}^{2\left(r_{2}-1\right)}=y_{d}^{2}=\sin \omega t$ are bounded

By using the control

$$
u(t)=L^{-1}\left(-R z-S \xi+\left[\begin{array}{c}
y_{d}^{1\left(r_{1}\right)} \\
\vdots \\
y_{d}^{m\left(r_{m}\right)}
\end{array}\right]+v(t)\right)
$$

We get that:

$$
\left[\begin{array}{c}
\dot{\xi}_{2}^{1} \\
\dot{\xi}_{1}^{2}
\end{array}\right]=\left[\begin{array}{c}
y_{d}^{1(2)}+v_{1} \\
y_{d}^{2(1)}+v_{2}
\end{array}\right]
$$

Defining the tracking errors as in page 44 in the lecture notes,

$$
e_{j}^{i}=c_{i} A^{j-1} x-y_{d}^{i(j-1)}=\xi_{j}^{i}-y_{d}^{i(j-1)} \quad i=1 \cdots m, \quad j=1 \cdots r_{i}
$$

we get

$$
\left[\begin{array}{l}
e_{1}^{1} \\
e_{2}^{1} \\
e_{1}^{2}
\end{array}\right]=\left[\begin{array}{l}
\xi_{1}^{1}-y_{d}^{1(0)} \\
\xi_{2}^{1}-y_{d}^{1(1)} \\
\xi_{1}^{2}-y_{d}^{2(0)}
\end{array}\right]
$$

which implies

$$
\left[\begin{array}{c}
\dot{e}_{1}^{1} \\
\dot{e}_{2}^{1} \\
\dot{e}_{1}^{2}
\end{array}\right]=\left[\begin{array}{c}
\dot{\xi}_{1}^{1}-y_{d}^{1(1)} \\
\dot{\xi}_{2}^{1}-y_{d}^{1(2)} \\
\dot{\xi}_{1}^{2}-y_{d}^{2(1)}
\end{array}\right]=\left[\begin{array}{c}
e_{2}^{1} \\
v_{1} \\
v_{2}
\end{array}\right]
$$

we obtain the closed-loop system (Y_{d} is defined in the lecture notes page 44):

$$
\left\{\begin{aligned}
\dot{z} & =N z+P e+P Y_{d} \\
{\left[\begin{array}{l}
\dot{e}_{1}^{1} \\
\dot{e}_{2}^{1}
\end{array}\right] } & =\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
e_{1}^{1} \\
e_{2}^{1}
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right] v_{1} \\
\dot{e}_{1}^{2} & =v_{2} \\
y_{1} & =\xi_{1} \\
y_{2} & =\xi_{2}
\end{aligned}\right.
$$

If we choose v such that the closed-loop system become asymptotically stable, for example

$$
\begin{aligned}
& v_{1}=\left[\begin{array}{ll}
-2 & -3
\end{array}\right]\left[\begin{array}{l}
e_{1}^{1} \\
e_{2}^{1}
\end{array}\right] \\
& v_{2}=-e_{1}^{2},
\end{aligned}
$$

we can check that the tracking problem with stability is solved since

1. $e(t) \rightarrow 0$ as $t \rightarrow \infty$, since the closed-loop system is asymptotically stable
2. z is bounded since $N=-1$ is a stable matrix (scalar) and ξ is bounded since $y_{d}^{1}, y_{d}^{1(1)}, y_{d}^{2(1)}$ are bounded, so $x(t)$ is bounded.
