
Mathematical Systems Theory: Advanced Course

Exercise Session 6

1 Normal form in SISO nonlinear systems

Consider a SISO nonlinear system{
ẋ = f(x) + g(x)u
y = h(x).

The system has relative degree at a point x0 if

LgL
k
fh(x) = 0, ∀x ∈ N (x0), k = 0, 1, . . . , r − 2,

LgL
r−1
f h(x0) 6= 0.

If the system has relative degree at x0, then in N (x0), we can transform
the system into a normal form:

ż = f0(z, ξ),

ξ̇1 = ξ2
...

ξ̇r−1 = ξr
ξ̇r = f1(z, ξ) + g1(z, ξ)u.

The zero dynamics is
ż = f0(z, 0).

To obtain a normal form, we take new states as

ξ1 := h(x), ξ2 := Lfh(x), · · · , ξr := Lr−1
f h(x).

As for the z part, first define

D := span {g} .

Then, compute

D⊥ := {wi(x) : i = 1, . . . , n− 1, wi(x)g = 0} .

For each row vector wi(x) =:
[
wi
1(x) · · · wi

n(x)
]
, if the following

holds:
∂wi

j

∂xk
=

∂wi
k

∂xj
, ∀j, k,
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then you can find zi satisfying

dzi = wi.

Choose such zi that are linearly independent of ξ part that has already been
chosen.

Otherwise, you have to change the basis of D⊥. (But how to find such
basis is not required in this course.)

Example

Consider the system 

ẋ1 = x2
ẋ2 = sinx1 + u
ẋ3 = x4
ẋ4 = sin 2x1 + (cosx1)u
y = x1,

or equivalently, 

ẋ =


x2

sinx1
x4

sin 2x1


︸ ︷︷ ︸

f(x)

+


0
1
0

cosx1


︸ ︷︷ ︸

g(x)

u

y = x1︸︷︷︸
h(x)

First, let us check if the system has relative degree at x = 0.

Lgh(x) =
∂h

∂x
g =

[
1 0 0 0

]
g = 0

LgLfh(x) = Lg

(
∂h

∂x
f

)
= Lg(x2) =

∂x2
∂x

g = 1 6= 0.

Hence, relative degree is two.
Next, we transform the system into a normal form. We take new states

as
ξ1 := h(x) = x1, ξ2 := Lfh(x) = x2.

We have to take another two states z1 and z2 (z part). To this end, we first
find

D⊥ := (span {g})⊥ = span
{
eT1 , e

T
3 ,

[
∗ cosx1 ∗ −1

]}
.
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We obtain one state z1 from the following observation:

dz = eT1 ⇒ z1 = x1 (already chosen as ξ1. Ignore!)
dz = eT3 ⇒ z1 = x3.

To ensure the existence of z2 with dz2 =
[
∗ cosx1 ∗ −1

]
, we verify

∂ cosx1
∂x4

=
∂(−1)

∂x2
(= 0).

So we can solve

dz2 =
[
∗ cosx1 ∗ −1

]
.

or equivalently, 
∂z2
∂x2

= cosx1

∂z2
∂x4

= −1

One solution is
z2 = (cosx1)x2 − x4.

Since ξ1 := x1, ξ2 := x2 and z1 := x3 do not include x4, this z2 satisfies the
second condition above.

Therefore,

ż1 = ẋ3 = x4 = (cosx1)x2 − z2 = (cos ξ1)ξ2 − z2
ż2 = (− sinx1)ẋ1x2 + (cosx1)ẋ2 − ẋ4

= −(sinx1)x
2
2 + (cosx1)(sinx1 + u)− (sin 2x1 + (cosx1)u)

= −(sin ξ1)ξ
2
2 −

1

2
sin 2ξ1

ξ̇1 = ẋ1 = x2 = ξ2
ξ̇2 = ẋ2 = sinx1 + u = sin ξ1 + u
y = ξ1.

The zero dynamics is obtained by setting ξ = 0:

ż1 = −z2

ż2 = 0.
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2 Local feedback stabilization

Consider a nonlinear control system

ẋ = f(x) + g(x)u.

To check the local stabilizability of this system, follow the procedure below.

1. First, you should always check if the linearized system with

A :=
∂f

∂x
(0), b = g(0)

is controllable (or stabilizable). If it is, then the nonlinear system is
locally stabilizable.

2. If Step 1 fails, then use Proposition 8.23 (page 77) in case the system
can be transformed into a normal form:

ż = f0(z, ξ)

ξ̇1 = ξ2
...

ξ̇r−1 = ξr

ξ̇r = f1(z, ξ) + g1(z, ξ)u

y = ξ1.

If the zero dynamics of the system is locally asymptotically stable,
then the stabilizing control is

u =
1

g1(z, ξ)
(−f1(z, ξ)− arξ1 + · · · − a1ξr),

where ai, i = 1, . . . , r are chosen so that the polynomial

sr + a1s
r−1 + · · ·+ ar

becomes Hurwitz polynomial (i.e., all the roots are in the open left
half-plane.)

3 Exact linearization

Consider a nonlinear control system

ẋ = f(x) + g(x)u, x ∈ N (x0) ⊂ Rn

We want to find
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• a feedback u = α(x) + β(x)v, and

• a coordinate change z = φ(x),

so that the resulting system becomes a linear system:

ż = Az + bv,

where (A, b) is controllable.

Proposition 8.20

The exact linearization problem is solvable at x0 if and only if

1. rank
[
g(x0) adfg(x

0) · · · adn−1
f g(x0)

]
= n

2. The distribution D(x) := span
{
g(x), adfg(x), · · · , adn−2

f g(x)
}
is invo-

lutive in N(x0).

Here,

ad0fg := g, ad1fg := [f, g] , adk+1
f g :=

[
f, adkfg

]
,

and D is involutive if for any k1, k2 ∈ D,

[k1, k2] ∈ D.

The method to obtain a feedback u = α(x) + β(x)v and a coordinate
change z = φ(x) is explained through an example.

Example

Consider the system

ẋ1 = x3 sin
2 x1 + u

ẋ2 = 2x3 cos
2 x1 − 2u

ẋ3 = 2 sinx2,

namely,

ẋ =

 x3 sin
2 x1

2x3 cos
2 x1

2 sinx2


︸ ︷︷ ︸

f(x)

+

 1
−2
0


︸ ︷︷ ︸

g

u

First, using Proposition 8.20, we check the solvability of the exact lin-
earization at x = 0.

5



1. adfg(0) and ad2fg(0) are computed as

adfg(0) = [f, g]x=0 = · · · =

 −x3 sin 2x1
2x3 sin 2x1
2 cosx2


x=0

=

 0
0
2


ad2fg(0) = [f, adfg]x=0 = · · · =

 0
−2
0

 .

Hence,

rank
[
g(0) adfg(0) ad2fg(0)

]
= rank

 1 0 0
−2 0 −2
0 2 0

 = 3.

2. Check if the distribution D := span {g, adfg} is involutive in N (0).

[g, adfg] =
∂adfg

∂x
g − ∂g

∂x
adfg =

 −2x3 cos 2x1
4x3 cos 2x1
4 sinx2

 .

= 2x3(tanx2 sin 2x1 − cos 2x1)

 1
−2
0


︸ ︷︷ ︸

g

+2 tanx2

 −x3 sin 2x1
2x3 sin 2x1
2 cosx2


︸ ︷︷ ︸

adfg

∈ D.

Hence D is involutive in N (0).

We want to find λ(x) such that the system

ẋ = f(x) + g(x)u

y = λ(x)

has relative degree three. Such λ is obtained by finding D⊥:

D⊥ = span {w} = span
{[

2 1 0
]}

.

In this case, since w is a constant vector, there exists a λ satisfying

dλ = w.

6



Such λ can be easily found by inspection.

λ = 2x1 + x2.

With the obtained λ, the system has relative degree three. Hence, by
doing a coordinate change as

ξ1 := λ(x) = 2x1 + x2

ξ2 := Lfλ(x) = 4x3

ξ3 := 4 sinx2,

we can transform the system into a normal form:
ξ̇1 = ξ2
ξ̇2 = ξ3
ξ̇3 = L3

fλ+ LgL
2
fλu

y = ξ1.

Thus, the exact linearization can be achieved by the feedback

u = −
L3
fλ

LgL2
fλ

+ v,

and the coordinate change above.

3.1 Multi-agent consensus

Consider N agents
ẋi = ui, i = 1, · · · , N.

Suppose each agent uses the following neighborhood control:

ui =
∑
j∈Ni

(xj − xi),

where Ni indicates the neighbors of agent i.
We say the consensus is reached if as t → ∞ we have

x1(t) = x2(t) = · · · = xN (t).

Solvability condition(Proposition 9.2)

The consensus problem is solved if the associated neighborhood graph is
connected.
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Example

We consider a three-agent system:

ẋi = ui, i = 1, 2, 3.

Case 1: N1 = 2, N2 = {1, 3}, N3 = 2. Then

ẋ1 = x2 − x1

ẋ2 = x1 − x2 + x3 − x2

ẋ3 = x2 − x3.

Let x̄ = Px, where

P =

 1 −1 0
0 1 −1
0 0 1

 ,

then

Ā = PAP−1 =

−2 1 0
0 −2 0
1 1 0

 .

Clearly, A has one eigenvalue at zero and two eigenvalues at −2.
Case 2: N1 = {2, 3}, N2 = {1, 3}, N3 = {1, 2}. Then

ẋ1 = x2 − x1 + x3 − x1

ẋ2 = x1 − x2 + x3 − x2

ẋ3 = x1 − x3 + x2 − x3.

Once again we let x̄ = Px, then

Ā = PAP−1 =

−3 0 0
0 −3 0
1 3 0

 .

In this case A has one eigenvalue at zero and two eigenvalues at −3. This
suggests that with more information available, the agents reach consensus
faster.
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