
Mathematical Systems Theory: Advanced Course

Exercise Session 7

1 Local feedback stabilization

Consider a nonlinear control system

ẋ = f(x) + g(x)u.

To check the local stabilizability of this system, follow the procedure below.

1. First, you should always check if the linearized system with

A :=
∂f

∂x
(0), b = g(0)

is controllable (or stabilizable). If it is, then the nonlinear system is
locally stabilizable.

2. If Step 1 fails, then use Proposition 8.19 (page 74) in case the system
can be transformed into a normal form:

ż = f0(z, ξ)
ξ̇1 = ξ2

...
ξ̇r−1 = ξr

ξ̇r = f1(z, ξ) + g1(z, ξ)u
y = ξ1.

If the zero dynamics of the system is locally asymptotically stable,
then the stabilizing control is

u =
1

g1(z, ξ)
(−f1(z, ξ) − arξ1 + · · · − a1ξr),

where ai, i = 1, . . . , r are chosen so that the polynomial

sr + a1s
r−1 + · · · + ar

becomes Hurwitz polynomial (i.e., all the roots are in the open left
half-plane.)
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2 Output regulation

Consider

ẋ = f(x) + g(x)u + p(x)w
ẇ = s(w)
e = h(x,w)

where the first equation is the plant with f(0) = 0, the second equation
is an exosystem as we defined before and e is the tracking error. Here w
represents both the signals to be tracked and disturbances to be rejected.

In the course we only consider the following full information output
regulation problem:

Find, if possible, u = α(x,w), such that
1. x = 0 of

ẋ = f(x) + g(x)α(x, 0)

is exponentially stable;
2. the solution to

ẋ = f(x,w, α(x,w))
ẇ = s(w)

satisfies
lim
t→∞ e(x(t), w(t)) = 0

for all initial data in some neighborhood of the origin.

Solvability condition (Theorem 8.24)

Suppose 1. w = 0 is a stable equilibrium of the exosystem and

∂s

∂w
|w=0

has all eigenvalues on the imaginary axis, and 2. the pair f(x), g(x) has
a stabilizable linear approximation at x = 0. Then the full information
output regulation problem is solvable if and only if there exist π(w), c(w)
with π(0) = 0, c(0) = 0, both defined in some neighborhood of the origin,
satisfying the equations

∂π

∂w
s(w) = f(π(w)) + g(π(w))c(w) + p(π(w))w

h(π(w), w) = 0
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The feedback control can be designed as

α(x,w) = K(x − π(w)) + c(w)

where K stabilizes the linearization of ẋ = f(x) + g(x)u.

Example

Consider the system

ẋ1 = −x1 + x2w1

ẋ2 = −x1 − x2 + u

ẇ1 = w2

ẇ2 = −w1

e = x2 − 1
2
w1 − 1

2
w2.

In order to solve the output regulation problem we need to find π(w) and
c(w).

Let x1 = π1(w), x2 = π2(w). Then from e = 0 we have

π2(w) =
1
2
w1 +

1
2
w2,

which implies (by taking derivative on both sides of x2 = π2(w)),

−π1(w) − π2(w) + c(w) =
1
2
w2 − 1

2
w1.

Thus, c(w) = 1
2w2 − 1

2w1 + π1 + π2.
Now we need to decide π1 (from ẋ1 = −x1 + x2w1):

∂π1(w)
∂w

· (w2 − w1)T = −π1 + w1π2.

Since π2 is linear in w, one can easily determine that π2 = c1w1 + c2w2 +
c3w

2
1 + c4w

2
2 + c5w1w2. By plugging in this into the above equation, we have

π2 =
1
10

(2w2
1 + 3w2

2 − 3w1w2).

Since the system with zero input and disturbance is already asymptotically
stable, we can choose K = 0, thus

α = c(w)

solves the output regulation problem.

3



3 Exact linearization

Consider a nonlinear control system

ẋ = f(x) + g(x)u, x ∈ N (x0) ⊂ Rn

We want to find

• a feedback u = α(x) + β(x)v, and

• a coordinate change z = φ(x),

so that the resulting system becomes a linear system:

ż = Az + bv,

where (A, b) is controllable.

Solvability condition (Proposition 8.26)

The exact linearization problem is solvable at x0 if and only if

1. rank
[

g(x0) adfg(x0) · · · adn−1
f g(x0)

]
= n

2. The distribution D(x) := span
{
g(x), adf g(x), · · · , adn−2

f g(x)
}

is invo-
lutive in N(x0).

Here,
ad0

fg := g, ad1
fg := [f, g] , adk+1

f g :=
[
f, adk

fg
]
,

and D is involutive if for any k1, k2 ∈ D,

[k1, k2] ∈ D.

How to solve the exact linearization

To solve the exact linearization, we use proposition 8.23 in the lecture notes,
we want to find λ(x) such that

ẋ = f(x) + g(x)u
y = λ(x)

has relative degree n at x0.
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How to obtain λ is explained through the example.
When we have λ, we can transform the system into a normal form:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ξ̇1 = ξ2
...

ξ̇n−1 = ξn

ξ̇n = Ln
f λ + LgL

n−1
f λu

y = ξ1.

by doing the following coordinate change

ξ1 := λ(x)
ξ2 := Lfλ(x)

...
ξn := Ln−1

f λ(x)

We see now that the following feedback

u = − Ln
f λ

LgL
n−1
f λ

+ v,

linearizes the system.

Example

Consider the system

ẋ1 = x3 sin2 x1 + u

ẋ2 = 2x3 cos2 x1 − 2u
ẋ3 = 2 sin x2,

namely,

ẋ =

⎡
⎢⎣

x3 sin2 x1

2x3 cos2 x1

2 sin x2

⎤
⎥⎦

︸ ︷︷ ︸
f(x)

+

⎡
⎢⎣

1
−2
0

⎤
⎥⎦

︸ ︷︷ ︸
g

u

First, using Proposition 8.24, we check the solvability of the exact lin-
earization at x = 0.
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1. adfg(0) and ad2
fg(0) are computed as

adfg(0) = [f, g]x=0 = · · · =

⎡
⎢⎣

−x3 sin 2x1

2x3 sin 2x1

2 cos x2

⎤
⎥⎦

x=0

=

⎡
⎢⎣

0
0
2

⎤
⎥⎦

ad2
fg(0) = [f, adfg]x=0 = · · · =

⎡
⎢⎣

0
−2
0

⎤
⎥⎦ .

Hence,

rank
[

g(0) adfg(0) ad2
fg(0)

]
= rank

⎡
⎢⎣

1 0 0
−2 0 −2
0 2 0

⎤
⎥⎦ = 3.

2. Check if the distribution D := span {g, adf g} is involutive in N (0).

[g, adf g] =
∂adfg

∂x
g − ∂g

∂x
adfg =

⎡
⎢⎣

−2x3 cos 2x1

4x3 cos 2x1

4 sin x2

⎤
⎥⎦ .

= 2x3(tan x2 sin 2x1 − cos 2x1)

⎡
⎢⎣

1
−2
0

⎤
⎥⎦

︸ ︷︷ ︸
g

+2 tan x2

⎡
⎢⎣

−x3 sin 2x1

2x3 sin 2x1

2 cos x2

⎤
⎥⎦

︸ ︷︷ ︸
adf g

∈ D.

Hence D is involutive in N (0) → exact linearization solvable.

We want to find λ(x) such that the system

ẋ = f(x) + g(x)u
y = λ(x)

has relative degree three. Such λ is obtained by finding D⊥:

D⊥ = span {w} = span
{[

2 1 0
]}

.

In this case, since w is a constant vector, there exists a λ satisfying

dλ = w.
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Such λ can be easily found by inspection.

λ = 2x1 + x2.

With the obtained λ, the system has relative degree three. Hence, by
doing a coordinate change as

ξ1 := λ(x) = 2x1 + x2

ξ2 := Lfλ(x) = 2x3

ξ3 := L2
fλ(x) = 4 sin x2,

we can transform the system into a normal form:
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ξ̇1 = ξ2

ξ̇2 = ξ3

ξ̇3 = L3
fλ + LgL

2
fλu

y = ξ1.

Thus, the exact linearization can be achieved by the feedback

u = − L3
fλ

LgL2
fλ

+ v,

and the coordinate change above.

3.1 Multi-agent consensus

Consider N agents
ẋi = ui, i = 1, · · · , N.

Suppose each agent uses the following neighborhood control:

ui =
∑
j∈Ni

(xj − xi),

where Ni indicates the neighbors of agent i.
We say the consensus is reached if as t → ∞ we have

x1(t) = x2(t) = · · · = xN (t).

Solvability condition(Proposition 9.2)

The consensus problem is solved if the associated neighborhood graph is
connected.
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Example

We consider a three-agent system:

ẋi = ui, i = 1, 2, 3.

Case 1: N1 = 2, N2 = {1, 3}, N3 = 2. Then

ẋ1 = x2 − x1

ẋ2 = x1 − x2 + x3 − x2

ẋ3 = x2 − x3.

Let x̄ = Px, where

P =

⎛
⎝

1 −1 0
0 1 −1
0 0 1

⎞
⎠ ,

then

Ā = PAP−1 =

⎛
⎝
−2 1 0
0 −2 0
1 1 0

⎞
⎠ .

Clearly, A has one eigenvalue at zero and two eigenvalues at −2.
Case 2: N1 = {2, 3}, N2 = {1, 3}, N3 = {1, 2}. Then

ẋ1 = x2 − x1 + x3 − x1

ẋ2 = x1 − x2 + x3 − x2

ẋ3 = x1 − x3 + x2 − x3.

Once again we let x̄ = Px, then

Ā = PAP−1 =

⎛
⎝
−3 0 0
0 −3 0
1 3 0

⎞
⎠ .

In this case A has one eigenvalue at zero and two eigenvalues at −3. This
suggests that with more information available, the agents reach consensus
faster.
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