SF2842: Geometric Control Theory, 2012

 Answers of Homework 1

 Answers of Homework 1}

November 20, 2012
1.
(a) $V^{*}=\operatorname{span}\left\{\left(\begin{array}{c}1 \\ -1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right)\right\}=\left\{\left.x=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right) \right\rvert\, x_{1}+x_{2}=0, x_{4}=0\right\}$.

The friend of V^{*} has the form

$$
\left(\begin{array}{cccc}
* & * & * & * \\
\alpha & \alpha+1 & -1 & *
\end{array}\right) .
$$

(b) $R^{*}=\operatorname{span}\left\{\left(\begin{array}{c}1 \\ -1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right)\right\}=V^{*}$.
2.
(a) The controllable subspace is $\Gamma=<A \mid \operatorname{Im} B>$. For any matrix $F \in R^{m \times n}$ and any $x \in \Gamma$, we have $(A+B F) x=A x+B F x \in \Gamma+\operatorname{Im} B=\Gamma$ since Γ is A-invariant and $\operatorname{Im} B \subseteq \Gamma$. Hence, Γ is $(A+B F)$-invariant for any F.
(b) It is straightforward that the unobservable subspace $\Omega=\operatorname{ker}\left(\begin{array}{c}C \\ C A \\ \vdots \\ C A^{n-1}\end{array}\right)$ is A-invariant. But Ω is not $(A+B F)=$ invariant for all F. Counter example can be

$$
A=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), B=\binom{1}{1}, C=\left(\begin{array}{ll}
1 & 0
\end{array}\right) \text { and } F=\left(\begin{array}{ll}
0 & 1
\end{array}\right) .
$$

(c) If the unobservable subspace $\Omega=\{0\}$, then it will be $(A+B F)$-invariant for all F . If Ω contains some non-zero element, then it cannot be $(A+B F)$-invariant for all F while the system has a relative degree. We know that $\Omega=\{0\}$ if and only if $\sum_{i=1}^{m} r_{i}=n$.
(a) $V^{*}=V^{*}=\operatorname{span}\left\{\left(\begin{array}{c}c \\ -1 \\ \frac{1}{c}\end{array}\right)\right\}$. DDP is solvable if and only if $\left(\begin{array}{l}d_{1} \\ d_{2} \\ d_{3}\end{array}\right) \in V^{*}$.
(b) The zero dynamics of the system will be $\dot{z}=-\frac{1}{c} z$. So we just need $c>0$.
4.
(a) When $a \neq-1$, the system will have a relative degree $(1,2)$.
(b) The zero dynamics is $\dot{z}=\frac{1-a}{1+a} z$.

