
SF2842: Geometric Control Theory
Homework 1
Due February 10, 16:59, 2015

You may discuss the problems in group (maximal two students in a group), but each of
you must write and submit your own report. Write the name of the person you
cooperated with.

1. Consider the system

ẋ = Ax+Bu =


0 1 0 0
0 1 1 0
0 1 2 0
0 0 1 1

x+


0 0
1 0
1 1
0 1

u (1)

y = Cx = (1 0 0 0)x.

(a) Is the system controllable? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1p)

(b) Let x(t, u) denote the solution to (1) with control u(t) and initial condition
x(0, u) = x0. Compute the subspace S of initial conditions x0 that make
x(t, u) ∈ Ker C ∀t ≥ 0 for some u(t), and design such a u(t) as feedback
control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3p)

(c) For any x0 ∈ S, where S is the subspace you computed in (b), and any t1 > 0,
can we always find a u(t) such that x(t1, u) = 0? . . . . . . . . . . . . . . . . . . . . . . . . (1p)

(d) For any x0 ∈ S, where S is the subspace you computed in (b), and any t1 > 0,
can we always find a u(t) such that x(t1, u) = 0, and x(t, u) ∈ S, 0 ≤ t ≤ t1?
(2p)

Answer:

(a). The system is controllable since the matrix
(
B AB

)
already has rank 4.

(b) S = V ∗ = span{e3, e4}.
(c) Yes, since the system is controllable.

(d) Yes, since S is a reachability subspace.

2. Consider an observable system

ẋ = Ax+Bu

y = Cx,

where x ∈ Rn, u ∈ R1, y ∈ R1.

(a) Show the controllable subspace R is (A+BF )-invariant for any F . . . . . . . (1p)
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(b) List all controllability subspaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1p)

(c) Show that (C, A+BF ) is also observable for almost all F , namely the elements
of those F that make (C, A + BF ) not observable can be defined by a set of
algebraic constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3p)

Answer:

(a) By the definition of the reachable subspace, R = 〈A|Im B〉 is an A-invariant
subspace that contains, at least, Im B. For any x ∈ R, and any F , we have that
(A+BF )x = Ax+BFx.R is A-invariant implies that Ax ∈ R. Together with the fact
that BFx ∈ Im B and the definition of a subspace, we know that (A+ BF )x ∈ R.
Thus, R is (A+BF )-invariant for any F .

(b) By definition, a reachability subspace is 〈A+BF |Im BG〉 for some F and G.
Note that for a SISO system, the G will be a scalar. If G 6= 0, then subspace Im BG is
equal to Im B, and the reachability subspace becomes 〈A+BF |Im B〉 = 〈A|Im B〉
– the reachable subspace. If G = 0, then we have a trivial reachability subspace {0}.
These two are the only possible reachability subspace for a SISO system.

(c) In the Hautus test of the pair (C,A+BF ), if it is unobservable, then there is an

s such that the matrix

(
sI −A−BF

C

)
dose not have full column rank. However,

we just need to check for the transmission zeros here to find s, since if s is not a

transmission zero, the Rosenbrock matrix

(
sI −A B
−C 0

)
will have full column rank,

and

(
sI −A−BF

C

)
will also have full column rank. This implies that a necessary

condition for (C,A+BF ) to be unobservable pair is that for a transmission zero s0 of
the system, the matrix s0I−A−BF is singular, i.e. ρ(s0) = det (s0I−A−BF ) = 0.
ρ(s0) defines a polynomial of the elements of F . Since the number of transmission
zero is strictly less than n, the set that is defined by the necessary condition is of
measure zero.

3. Consider

ẋ = Ax+Bu+ Ew

y = Cx,

where

A =

1 0 1
1 a 0
2 0 1

 , B =

0
0
1

 , C = (1 0 0), E =

d1
d2
d3

 ,

where a and d1, d2, d3 are constants.

(a) For what E is DDP solvable? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2p)

(b) For what a can we find a u = Fx that solves the DDP problem while makes
the closed-loop system stable? i.e. A+ BF has only eigenvalues with negative
real part. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2p)

(c) What is R∗? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1p)
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Answer:

(a) V ∗ = span{e2}, so DDP is solvable iff d1 = d3 = 0.

(b) Only when a < 0 does the system have a stable zero dynamics.

(c) R∗ = {0}.

4. Consider

ẋ1 = x1 + x3 + u1

ẋ2 = −x1 + x3 − u1

ẋ3 = x2 − x3 + x4 + u2

ẋ4 = 2x1 + x4 + u1

y1 = x1 + x2

y2 = x4

(a) What is the relative degree for the system? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1p)

(b) Convert the system into the normal form and compute the zero dynamics.(3p)

(c) When y(t) = 0 ∀t ≥ 0, what happens to x(t) as t → ∞? . . . . . . . . . . . . . . . . . . (1p)

Answer:

(a) The system has a relative degree (2, 1).

(b) ξ11 = x1 + x2, ξ
2
1 = x3, ξ

1
2 = x4. One can pick, for instance, z = x2 + x4 and get

that the zero dynamics is ż = −z.

(c) x(t) → 0 as t → ∞ since the zero dynamics is stable.
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