KTH Matematik

SF2842: Geometric Control Theory

Solution to Homework 2

Due November 27, 16:50pm, 2008
You may discuss the problems in group (maximal two students in a group), but each of you must write and submit your own report. Write the name of the person you cooperated with.

1. Consider the system

$$
\begin{aligned}
\dot{x} & =\left(\begin{array}{cccc}
-1 & 0 & -1 & -2 \\
0 & 0 & 1 & 2 \\
-1 & -1 & 2 & 0 \\
0 & 1 & 0 & -1
\end{array}\right) x+\left(\begin{array}{cc}
-1 & -1 \\
1 & 1 \\
0 & 1 \\
0 & 1
\end{array}\right) u \\
y & =\left(\begin{array}{cccc}
1 & 1 & 0 & 0 \\
0 & 0 & 2 & 0
\end{array}\right) x .
\end{aligned}
$$

(a) What is the zero dynamics? [1p]

$$
\dot{z}=-z .
$$

(b) Use the Rosenbrock matrix to verify your computation of the transmission zero from (a). [1p]
(c) Solve the noninteracting control problem. [1p]

Since the system has rel. degree $(2,1)$, the noninteracting problem is solvable. Let $z=x_{4}, \xi_{1}^{1}=x_{1}+x_{2}, \xi_{2}^{1}=-x_{2}, \xi_{1}^{2}=2 x_{3}$.
2. Consider the system

$$
\begin{aligned}
\dot{x}_{1} & =x_{2} \\
\dot{x}_{2} & =-x_{1}-2 x_{2}+w_{1} \\
\dot{w}_{1} & =w_{1}+w_{2} \\
\dot{w}_{2} & =w_{2} \\
y & =x_{1}-x_{2}
\end{aligned}
$$

(a) Compute the invariant subspace $x=\Pi w$ if it exists (the Matlab command "lyap" can be used). [2p]
(b) Is the above system (consisting of x and w) observable or not? Why so? [1p] Not observable, since $s=1$ is a transmission zero.
3. Consider the car steering example:

$$
\begin{aligned}
& \dot{\alpha}_{f}=-2 \alpha_{f}+r+\dot{\delta}_{f} \\
& \dot{\psi}=r \\
& \dot{r}=-0.6 \alpha_{f}-2 \psi+3 \delta_{f}+d(t),
\end{aligned}
$$

where the driver's goal is to keep the orientation straight, i.e., $\delta_{f}=-0.5 \psi$, and $d(t)$ is a sinusoidal disturbance $a \sin (2 t+\theta)$ with unknown amplitude and phase.
Design an output that is a linear combination of ψ and r, such that the output optimally reconstructs the disturbance in stationarity. You may use Matlab for computation. [3p]
4. Consider:

$$
\begin{aligned}
\dot{x}_{1} & =\alpha x_{1}-x_{4}+w_{3} \\
\dot{x}_{2} & =x_{3} \\
\dot{x}_{3} & =u_{2} \\
\dot{x}_{4} & =-x_{3}-x_{4}-u_{1}+u_{2} \\
\dot{w}_{1} & =w_{2} \\
\dot{w}_{2} & =-w_{1} \\
\dot{w}_{3} & =w_{1} \\
e_{1} & =x_{2}-w_{2} \\
e_{2} & =x_{4}-w_{1}
\end{aligned}
$$

(a) For $\alpha=1$, find a control $u=K x+E w$ that solves the full information output regulation problem. [2p]

1. Solve the sylvester equation: $x_{2}=w_{2}, x_{4}=w_{1}, x_{3}=-w_{1}, x_{1}=\pi_{1} w$, $u_{2}=c_{2} w=-w_{2}, u_{1}=c_{1} w=u_{2}-x_{3}-x_{4}=-w_{2}$.
2. Let $f_{2} x=-k_{1} x_{2}-k_{2} x_{3}, f_{1} x=-\left(p_{1}+p_{2}+1\right) x_{1}+p_{2} x_{4}$, where all coefficients are positive.
(b) What is the real value(s) of α such that the regulation problem may not be solvable? [1p]
$\alpha=0$.
