SF2842: Geometric Control Theory, 2012
 Answers of Homework 2

December 4, 2012
1.
(a) If $a=0$, then $V^{*}=\operatorname{span}\left\{e_{2} \cdot e_{3}, e_{4}\right\}$, and $V^{*} \cap \operatorname{Im} B=\operatorname{Im} B \neq 0$.

If $a \neq 0$, then the relative degree of the system is 2 . Then the system is invertible.
Therefore, the system is invertible iff $a \neq 0$.
(b) If $a \neq 0$, then the transmission zeros s should satisfy the equation

$$
s^{2}+s+2 a=0
$$

which gives $s_{1,2}=-\frac{-1 \pm \sqrt{1-8 a}}{2}$.
If $a=0$, then $R^{*}=V^{*}$, and the number of transmission zeros are $\operatorname{dim} V^{*}-\operatorname{dim} R^{*}=0$. There is no transmission zero.
(c) High gain control is achievable when the zero dynamics is stable $\Leftrightarrow \underline{a>0}$.
2.

In this problem, $A=\left(\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -3 & -3\end{array}\right), B=\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right), P=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right), \Gamma=\left(\begin{array}{cc}0 & \beta \\ -\beta & 0\end{array}\right)$, $c=\left(\begin{array}{lll}-\alpha & 0 & 1\end{array}\right)$ and $q=\left(\begin{array}{ll}1 & 0\end{array}\right)$.
(a) The solution to the Sylvester equation $A \Pi-\Pi \Gamma=-P q$ is

$$
\Pi=-\frac{1}{4}\left(\begin{array}{cc}
-1 & -1 \\
1 & -1 \\
1 & 1
\end{array}\right)
$$

(b) In order to have the whole system observable, we need 1) the pair (c, A) to be observable, 2) the pair (q, Γ) to be observable and 3) eigenvalues of Γ are not the transmission zero of the system

$$
\begin{aligned}
\dot{x} & =A x+P u \\
y & =c x .
\end{aligned}
$$

1) $\Rightarrow \alpha \neq 1$
2) always holds
3) $\Rightarrow \alpha \neq-1$

Therefore, when $\underline{\alpha \neq \pm 1}$, the whole system is observable.
(c) The FIORP is solvable when the eigenvalues of Γ are not the transmission zero of the system

$$
\begin{aligned}
\dot{x} & =A x+B u \\
y & =c x
\end{aligned}
$$

The only case when this happens is when $\alpha=-3$ and $\beta=\sqrt{11}$. When $\alpha \neq-3$ or $\beta \neq \sqrt{11}$, the FIORP is solvable.
3.

The system could be rewrite as

$$
\begin{aligned}
\left(\begin{array}{c}
\dot{\alpha}_{f} \\
\dot{\varphi} \\
\dot{r}
\end{array}\right) & =\left(\begin{array}{ccc}
-2 & 0 & 0.76 \\
0 & 0 & 1 \\
-0.6 & -2.8 & 0
\end{array}\right)\left(\begin{array}{c}
\alpha_{f} \\
\varphi \\
r
\end{array}\right)+\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) u=A\left(\begin{array}{c}
\alpha_{f} \\
\varphi \\
r
\end{array}\right)+b u \\
\binom{\dot{w}_{1}}{\dot{w}_{2}} & =\left(\begin{array}{cc}
0 & 2 \\
-2 & 0
\end{array}\right)\binom{w_{1}}{w_{2}}=\Gamma\binom{w_{1}}{w_{2}} \\
u & =\left(\begin{array}{ll}
1 & 0
\end{array}\right)\binom{w_{1}}{w_{2}}=q\binom{w_{1}}{w_{2}}
\end{aligned}
$$

The OTIP is solved by Π and c that is the solution to the equations

$$
\begin{aligned}
А \Pi-\Pi \Gamma & =-b q \\
c \Pi & =q,
\end{aligned}
$$

which gives the result

$$
\Pi=\left(\begin{array}{cc}
-0.28 & -0.46 \\
-0.96 & -0.23 \\
0.46 & -1.95
\end{array}\right), c=\left(\begin{array}{lll}
0 & -0.97 & 0.11
\end{array}\right)
$$

