SF2842: Geometric Control Theory, 2014
 Answers of Homework 2

March 6, 2014

1. Solution:

a. $x_{1}=0 \Rightarrow \dot{x}_{1}=x_{1}+a x_{2}=0 \Rightarrow a x_{2}=0$.

If $a=0$, then we have $c A^{k} b=0$ for any $k \in \mathbb{Z}^{+}$. Thus, the system does not have relative degree.
If $a \neq 0$, then we have $x_{2}=0 \Rightarrow \dot{x}_{2}=2 x_{2}+a x_{3}+u=0 \Rightarrow u=-a x_{3}$. The system has relative degree 2.
b. For $a \neq 0$, let $\xi_{1}=x_{1}, \xi_{2}=x_{2}, z_{1}=x_{3}$ and $z_{2}=x_{2}-x_{4}$.
$\dot{z}_{1}=\dot{x}_{3}=x_{1}+x_{4}=-z_{2}+\xi_{1}+\xi_{2}$
$\dot{z}_{2}=\dot{x}_{2}-\dot{x}_{4}=2 x_{2}+a x_{3}-x_{2}+x_{4}=a z_{1}-z_{2}+2 \xi_{2}$
Zero dynamics: $\dot{z}=\left(\begin{array}{ll}0 & -1 \\ a & -1\end{array}\right) z$
c. If $a=-2$, the matrix $\left(\begin{array}{ll}0 & -1 \\ a & -1\end{array}\right)$ has eigenvalues $1,-2$.
$P(s)=\operatorname{det}\left(\begin{array}{cc}s I-A & b \\ -c & 0\end{array}\right)=\cdots=-2 s^{2}-2 s+4=0 \Rightarrow s=1,-2$.

2. Solution:

a. $А П-\Pi \Gamma=-b q$
$\left(\begin{array}{cc}0 & 1 \\ -1 & -2\end{array}\right)\left(\begin{array}{ll}\pi_{11} & \pi_{12} \\ \pi_{21} & \pi_{22}\end{array}\right)-\left(\begin{array}{ll}\pi_{11} & \pi_{12} \\ \pi_{21} & \pi_{22}\end{array}\right)\left(\begin{array}{ll}0 & 1 \\ 0 & 2\end{array}\right)=-\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right) \Rightarrow \Pi=\underline{\left(\begin{array}{cc}1 & -\frac{4}{9} \\ 0 & \frac{1}{9}\end{array}\right) .}$
b. If $a=1$, the pair (c, A) becomes unobservable. If $a=0$ or -2 , at least one of the eigenvalues of the matrix Γ will be the transmission zero of the system (A, b, c).
Hence, if $a \neq-2,1,(0)$, the big system is observable.

3. Solution:

The system can be written as

$$
\begin{aligned}
\left(\begin{array}{c}
\alpha_{f} \\
\psi \\
r
\end{array}\right) & =\left(\begin{array}{ccc}
-2 & 0 & -0.5 \\
0 & 0 & 1 \\
-0.6 & -3.5 & 0
\end{array}\right)\left(\begin{array}{c}
\alpha_{f} \\
\psi \\
r
\end{array}\right)+\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) u \\
\binom{w_{1}}{w_{2}} & =\left(\begin{array}{cc}
0 & 2 \\
-2 & 0
\end{array}\right)\binom{w_{1}}{w_{2}} \\
u & =\left(\begin{array}{ll}
0 & 1
\end{array}\right)\binom{w_{1}}{w_{2}}
\end{aligned}
$$

The solution to the problem can be obtained by solving

$$
\begin{gathered}
A \Pi-\Pi \Gamma=-b q \\
c \Pi=q
\end{gathered}
$$

while constraining that $c_{1}=0$.

4. Solution:

a. FIORP is solvable iff no eigenvalues of S is the transmission zero of the system (A, B, C). S has eigenvalues $0, \pm i$.

$$
P(s)=\operatorname{det}\left(\begin{array}{cc}
s I-A & b \\
-c & 0
\end{array}\right)=\cdots=2(\alpha+1-s) \Rightarrow \underline{a \neq-1} .
$$

b. The solution to the Sylvester equation:

$$
\begin{aligned}
\Pi s & =A \Pi+B \Gamma+P \\
0 & =C \Pi-Q
\end{aligned}
$$

is

$$
\Pi=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & -1 \\
0 & 1 & 0
\end{array}\right), \Gamma=\left(\begin{array}{ccc}
-1 & 1 & 0 \\
-1 & 0 & -1
\end{array}\right)
$$

