SF2842: Geometric Control Theory

Solution to Homework 2

Due February 26, 16:50pm, 2015
You may discuss the problems in group (maximal two students in a group), but each of you must write and submit your own report. Write the name of the person you cooperated with.

1. Consider

$$
\begin{aligned}
\dot{x} & =A x+B u \\
y & =C x,
\end{aligned}
$$

where $x \in R^{n}, u \in R^{m}, y \in R^{m}$. Show that the maximal controllability (reachability) subspace contained in $\operatorname{ker} C$ is $\{0\}$ if the system has some relative degree $\left(r_{1}, \cdots, r_{m}\right)$. [3p]

Answer:
If the system has relative degree, the maximum (A, B)-invariant subspace can be expressed as $V^{*}=\left\{x: \quad c_{i} A^{j-1} x=0, i=1, \ldots, m\right.$ and $\left.j=1, \ldots, r_{i}\right\}$. For any nonzero vector in $\operatorname{Im} B, y=B v \neq 0$, if y is also in V^{*}, then we have $c_{i} A^{r_{i}-1} B v=0$ for $i=1, \ldots, m$. If we stack these equations, we will get

$$
\left(\begin{array}{c}
c_{1} A^{r_{1}-1} B \\
c_{2} A^{r_{2}-1} B \\
\vdots \\
c_{m} A^{r_{m}-1} B
\end{array}\right) v=L v=0 .
$$

By the definition of the relative degree, L is nonsingular, which implies $v=0$. But this contradicts with the assumption that $y \neq 0$. Hence $V^{*} \cap \operatorname{Im} B=\{0\}$, and it follows that R^{*} is $\{0\}$ as well.
2. Consider the system

$$
\begin{aligned}
\dot{x} & =\left(\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
1 & 0 & -1 & 1 \\
0 & 1 & 0 & -1
\end{array}\right) x+\left(\begin{array}{ll}
1 & 0 \\
a & 1 \\
0 & 1 \\
0 & 0
\end{array}\right) u \\
y & =\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) x,
\end{aligned}
$$

where a is a constant.
(a) Compute the transmission zeros. [3p]
(b) For what a does the system have relative degree? [2p]
(c) when is the system invertible? [2p]

Answer:
(a) When $a=0$, the system does not have transmission zero. When $a \neq 0, s_{0}=\frac{a+1}{a}$ is the transmission zero of the system.
(b) The system has relative degree $(1,2)$ when $a \neq 0$.
(c) The system is invertible for any a. (Just need to check whether $V^{*} \cap \operatorname{Im} B=0$ or not.)
3. Consider a control system subject to disturbance:

$$
\begin{aligned}
\dot{x}_{1} & =x_{2} \\
\dot{x}_{2} & =-x_{1}-2 x_{2}+x_{3}+u-w_{1} \\
\dot{x}_{3} & =-\alpha x_{3}-2 u+w_{1} \\
y & =x_{1}
\end{aligned}
$$

where w_{1} is an unknown nonzero constant (disturbance), and α a positive constant.
(a) Let $u=0$ and compute the invariant subspace $x=\Pi w_{1} .[2 \mathrm{p}]$
(b) For what value(s) of α is the above system (consisting of x and w_{1}) unobservable? Explain why. [2p]
(c) Let the desired output $y_{d}=1$, for what α is the full information output regulation problem solvable? [3p]

Answer:
(a) One can write the system as $\dot{x}=A x+B u+P w, y=C x$, with appropriate A, B, P, and $C . w$ is a constant implies that $\dot{w}=0 w$. On the invariant subspace $x=\Pi w$, it holds that $\dot{x}=\Pi \dot{w}$, which gives the equation

$$
A x+B u+P w=\Pi \cdot 0 \Rightarrow A \Pi w+P w=0
$$

for any w. Solving the equation $A \Pi+P=0$ results in

$$
\Pi=\left(\begin{array}{c}
\frac{1}{\alpha}-1 \\
0 \\
\frac{1}{\alpha}
\end{array}\right)
$$

(b) The system is unobservable if and only if 0 is a transmission zero of the system (A, P, C). This happens only when $\alpha=1$.
(c) The error feedback output regulation problem is solvable if and only if 0 is not a transmission zero of the system (A, B, C). This happens when $\alpha \neq 2$. (Note that when $\alpha=3$, the system is not controllable, but still stabilizable since A itself is a stable matrix. So it is OK.)
4. Consider the car steering example:

$$
\begin{aligned}
& \dot{\alpha}_{f}=-2 \alpha_{f}+r+0.5 \dot{\delta}_{f} \\
& \dot{\psi}=r \\
& \dot{r}=-1.5 \alpha_{f}-1.2 \psi+\delta_{f}+d(t),
\end{aligned}
$$

where the driver's goal is to keep the orientation straight $\left(\delta_{f}=-0.7 \psi\right), d(t)$ is a sinusoidal disturbance $a \sin (2 t+\theta)$ with unknown amplitude and phase.
Design an output that is a linear combination of ψ and r, such that the output reconstructs the disturbance in stationarity, and use Matlab simulation to illustrate your result. [3p]

Answer:
The system constrained with $\delta_{f}=-0.7 \psi$ can be written as:

$$
\begin{aligned}
\dot{x} & =A x+b u \\
\dot{w} & =\Gamma w \\
u & =q w,
\end{aligned}
$$

where

$$
x=\left(\begin{array}{c}
\alpha_{f} \\
\psi \\
r
\end{array}\right), A=\left(\begin{array}{ccc}
-2 & 0 & 0.65 \\
0 & 0 & 1 \\
-1.5 & -1.9 & 0
\end{array}\right), b=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right), \Gamma=\left(\begin{array}{cc}
0 & 2 \\
-2 & 0
\end{array}\right) \text {, and } q=\left(\begin{array}{ll}
1 & 0
\end{array}\right) .
$$

The output tracking input problem with using only ψ and r can solved by solving

$$
\begin{aligned}
A \Pi-\Pi \Gamma & =-b q \\
c \Pi & =q,
\end{aligned}
$$

where $c=\left(\begin{array}{lll}0 & c_{2} & c_{3}\end{array}\right)$. It turns out that $c=\left(\begin{array}{lll}0 & -1.6125 & 0.2438\end{array}\right)$ solves the OTIP.

