SF2842: Geometric Control Theory, 2014
 Answers of Homework 3

March 23, 2014

1. Solution:

2. Solution:

a. True. This can be proved by showing $\frac{\partial}{\partial t}\left\|x_{i}-x_{0}\right\|^{2}$ is negative when x_{i} is already on the boundary, namely, $\left\|x_{i}-x_{0}\right\|=r$
b. False. A counter example can be

$$
\begin{aligned}
& \dot{x}_{1}=-x_{1}, \\
& \dot{x}_{2}=x_{2}+u .
\end{aligned}
$$

3. Solution:

a. The first approximation gives:

$$
\begin{aligned}
& \dot{x}_{1}=\alpha x_{1}, \\
& \dot{x}_{2}=x_{1}-2 x_{2},
\end{aligned}
$$

and is:

- exponentially stable when $\alpha<0 \Rightarrow$ The system is exponentially stable;
- unstable when $\alpha>0 \Rightarrow$ The system is unstable;
- critical stable when $\alpha=0 \Rightarrow$ The stability of the system depends on β.
b. When $\alpha=0$ the system can be written as:

$$
\dot{\omega}=-\beta \omega^{7}+O\left(\beta^{2} \omega^{9}\right)
$$

on the center manifold, and is

- exponentially stable when $\beta>0 \Rightarrow$ The system is exponentially stable;
- unstable when $\beta<0 \Rightarrow$ The system is unstable;
- stable when $\beta=0 \Rightarrow$ The system is stable (but not asymptotically).

4. Solution:

a. Let $\xi_{1}=x_{1}, \xi_{2}=x_{2}-x_{1}^{3}$, and $z=x_{3} e^{-x_{2}}$, then we can write the system in its normal form:

$$
\begin{aligned}
\dot{z} & =\left(\xi_{1}^{3}+\xi_{2}\right) z-e^{2\left(\xi_{1}^{3}+\xi_{2}\right)} z^{3}+\xi_{1}^{3} e^{-\left(\xi_{1}^{3}+\xi_{2}\right)} \\
\dot{\xi}_{1} & =\xi_{2} \\
\dot{\xi}_{2} & =z^{2} e^{2\left(\xi_{1}^{3}+\xi_{2}\right)}-\xi_{2}-\xi_{1}^{3}-3 \xi_{1}^{2} \xi_{2}+u .
\end{aligned}
$$

Zero dynamics: $\dot{z}=-z^{3}$.
b. Yes, since the zero dynamics is stable.
c. No, since the matrix $\left(g(x 0) \quad a d_{f} g\left(x_{0}\right) \quad a d_{f}^{2} g\left(x_{0}\right)\right)$ has only rank 2 .

