
Solution to Final Exam of SF2842 Geometric Control
Theory
March 20 2015

Examiner: Xiaoming Hu, phone 790 71 80, mobile 070-796 78 31.

Allowed written material: All course material (except the old exams, homeworks and
their solutions) and β mathematics handbook.

Solution methods: All conclusions must be properly motivated. Note: the problems are
not necessarily ordered in terms of difficulty.

Note! Your personnummer must be stated on the cover sheet. Number your pages and
write your name on each sheet that you turn in!

Preliminary grades: 31 points give grade C, 37 points B and 43 points give grade A.

1. Determine if each of the following statements is true or false and motivate (no
motivation no score) your answer briefly (for example, to show a statement is false,
a counter-example is enough).

(a) Consider a square linear system

ẋ = Ax+Bu

y = Cx (1)

where x ∈ Rn, u ∈ Rm, y ∈ Rm.

If it does not have any (transmission) zero, then it is both controllable and
observable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(2p)

Solution: True. This can be shown by Hautus test for controllability and ob-
servability.

(b) Consider again system (1) and assume B has full column rank. If R∗ = {0}
then the system is invertible. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2p)

Solution: True, as is argued in the compendium.

(c) Consider

ẋ = Ax+Bu+ Pw

ẇ = Sw

y = Cx,

where u is control and w disturbance. Assume both (A,B) and (A,P ) are
controllable and (C,A) is observable. If the system that consists of both x and
w is not observable, then output regulation with full information is not solvable
(here Q = 0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2p)

Solution: False. An eigenvalue of S that is tranmission zero of system (A,P,C)
is not necessarily transmission zero of system (A,B,C).
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(d) Consider a nonlinear single-input single-output system

ẋ = f(x) + g(x)u

y = h(x) (2)

where x ∈ Rn, f, g, h ∈ C∞ and f(0) = 0, h(0) = 0.

The following is the linearized approximation of (2):

ẋ = Ax+ bu (3)

y = cx,

where A = ∂f(x)
∂x |x=0, b = g(0), c = ∂h(x)

∂x |x=0. Assume system (2) has relative
degree r at the origin and is minimum phase. Then the linearized system (3) is
also minimum phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2p)

Solution: False, unless the nonlinear zero dynamics is exponentially stable.

(e) Consider again system (2). If the system has relative degree n at the origin,
then the system is exponentially stabilizable by a state feedback. . . . . . . . . (2p)

Solution: True, since in this case the system is exactly linearizable, thus asymp-
totically stabilizable as a linear system.

2. Consider the system

ẋ =


2 0 1 0
0 1 1 0
1 0 1 0
1 1 0 1

x+


1 0
1 0
−1 0
0 1

u

y =

(
1 0 0 0
0 1 0 0

)
x.

(a) Find V ∗. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3p)

Solution: V ∗ = {x ∈ R4, x1 = x2 = 0}.
(b) Find R∗. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2p)

Solution: R∗ = {x ∈ R4, x1 = x2 = x3 = 0}.
(c) Can we find a friend F of V ∗, such that A + BF has all the eigenvalues with

negative real parts? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3p)

Solution: No.

(d) Can we find a friend F of V ∗ that makes V ∗ attractive? Namely for any solution
x(t) of the closed-loop system ẋ = (A+BF )x, the Euclidean distance from x(t)
to V ∗ tends to zero as t → ∞. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2p)

Solution: Yes, if we choose u1 = −9x1 + 4x2 − x3 for example.
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3. Consider the system

ẋ =


2 1 0 0
0 1 1 1
0 0 1 1
0 0 1 −1

x+


0 0
1 1
α 1
0 0

(
u1
u2

)
(
y1
y2

)
=

(
1 0 0 0
0 0 1 0

)
x,

where α is a real constant.

(a) For what value of α is the noninteracting control problem solvable? . . . . . (3p)

Solution: α 6= 1.

(b) What is the transmission zero(s) of the system when the noninteracting control
problem is solvable? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2p)

Solution: s = −1.

(c) Suppose now the first output y1 is taken away from the system, namely only
y2 is kept as output. What is the transmission zero(s) of the system now? (5p)

Solution: Case 1. α = 1. We can treat u1 + u2 as one control, then the cor-
responding SISO system has relative degree 3, which gives s = 2, 1,−1. Case
2. α 6= 1. Then the only possible zero would be s = −1, and this is verified by
checking the rank of the system matrix at s = −1.

4. Consider:

ẋ1 = x2
...

ẋn−1 = xn

ẋn = Kx+ u+ q(t),

where K = (k1 k2 · · · kn) is chosen such that when u and q(t) are set to zero, the
system is exponentially stable.

(a) Let q(t) = αt+β sin(ωt+φ), where α, β > 0, ω > 0, φ are arbitrary constants.
What is the minimum order of the system such that there exists an output
y = cx that reconstructs q(t) in stationarity when u = 0? . . . . . . . . . . . . . . . . (3p)

Solution: n = 4.

(b) Now let n = 3, y = 4x1 + x3 be the output and q(t) = αt be the disturbance,
show that for almost all values of ω > 0, the full information output regulation
problem with the tracking error e = y − cos(ωt) is solvable (a solution is not
required, but you need specify the values of ω for which a solution may not
exist). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3p)

Solution: The system has zeros at s = ±j2. Thus ω = 2 is the only value for
which a solution may not exist.
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(c) Let ω = 1. Can we solve the error feedback output regulation problem for the
system specified in (b)? (Hint: let x̃3 = x3 − {the reference output}. This can
reduce the computation considerably). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4p)

Solution:We can write down the exo system ẇ = Sw, where S =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 −1 0

,

and q(t) = w1, cos(t) = w4. After the coordinate change, the system is in the
form (when setting u = 0 and replace x3 by x̃3)

ẋ = Ax+ pdw

ẇ = Sw

e = 4x1 + x̃3,

where d = (1 0 1 k3). We can verify that (d, S) is observable. Then applying
the results in Ch. 6 we can show that the system is observable.

5. Consider in a neighborhood N of the origin

ẋ1 = x51 − x21x2 + 2u

ẋ2 = −x2 + αx31

ẋ3 = x32 + e−x3u

y = x1 + 1− ex3 ,

where α is a constant.

(a) Convert the system into the normal form. (Hint: no need to start with one-
forms) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3p)

Solution: Let ξ1 = y = x1 + 1− ex3 , z1 = x2, z2 = x1 + 2(1− ex3), we get

ż1 = −z1 + αx31

ż2 = x51 − x21z1 − 2ex3z31

ξ̇1 = x51 − x21z1 − ex3z31 + u

y = ξ1,

where x1 = 2ξ1 − z2, e
x3 = 1 + ξ1 − z2.

(b) Analyze the stability of the zero dynamics in terms of α. . . . . . . . . . . . . . . . . (3p)

Solution: Zero dynamics:

ż1 = −z1 − αz32

ż2 = −z52 − z22z1 − 2(1− z2)z
3
1 .

It is asymptotically stable if α < 1, otherwise unstable.

(c) Design a feedback control to stabilize the nonlinear system for the case when
the zero dynamics is asymptotically stable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2p)

Solution: omitted.

(d) Show the system without the output is not exactly linearizable. . . . . . . . . . . (2p)

Solution: Since the linearized system is not controllable.


