

Solution to Final Exam of SF2842 Geometric Control Theory

March 2016

Examiner: Xiaoming Hu, phone 790 71 80, mobile 070-796 78 31.

<u>Allowed written material</u>: the lecture notes, the exercise notes, your own classnotes and β mathematics handbook.

<u>Solution methods</u>: All conclusions must be properly motivated. Note: the problems are not necessarily ordered in terms of difficulty.

<u>Note!</u> Your personnummer must be stated on the cover sheet. Number your pages and write your name on each sheet that you turn in!

Preliminary grades: 45 points give grade E, 50 points D, 61 points C, 76 points B, and 91 points A.

- 1. Determine if each of the following statements is *true* or *false* and **motivate** (no motivation no score) your answer briefly (for example, to show a statement is false, a counter-example is enough).
 - (a) Consider a square linear system that is both controllable and observable.

$$\dot{x} = Ax + Bu
y = Cx$$
(1)

where $x \in \mathbb{R}^n$, $u \in \mathbb{R}^m$, $y \in \mathbb{R}^m$.

If $V^* \neq 0$, then system (1) can be made unobservable by some u = Fx...(4p) Answer: True, since $V^* \subset ker \ C$ and is A + BF-invariant for any friend F.

Answer: True according to discussions in Chapter 6.

(d) Consider

$$\dot{x} = \sum_{i=1}^{m} g_i(x) u_i,$$

where $x \in N(0) \subset \mathbb{R}^n$ and m < n. Suppose $\omega_i(x), i = 1, \dots, n - m$ are row vectors that are linearly independent on N(0) such that $\omega_i(x)g_j(x) = 0, \forall i, j$. If for some $i^* \leq n - m$, $\frac{\partial z(x)}{\partial x} = \omega_{i^*}(x)$, where z(x) is a scalar function, then the system is not controllable in some neighborhood of the origin.

Answer: True, since this would imply z(x(t)) = z(x(0)).

(e) Consider a nonlinear single-input single-output system

$$\dot{x} = f(x) + g(x)u$$

 $y = h(x)$

2. Consider the system

$$\dot{x} = \begin{pmatrix} -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} x + \begin{pmatrix} 0 & 0 \\ 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix} u$$
$$y = (1 \ 0 \ 0 \ 0)x.$$

Answer: Yes. For example, $u_1 = -x_3$, $u_2 = -x_3 - x_4$.

3. Consider the system

$$\dot{x} = \begin{pmatrix} 2 & 2 & 2 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 2 \\ 1 & 1 & 0 & 1 \end{pmatrix} x + \begin{pmatrix} 0 & -1 \\ \alpha_1 & 1 \\ 0 & 0 \\ 0 & \alpha_2 \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$$
$$\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} x.$$

Design real coefficients α_1, α_2 such that the following two conditions are both satisfied simultaneously

- 4. Consider a control system subject to disturbance:
 - $\begin{array}{rcl} \dot{x}_1 &=& x_2 \\ \dot{x}_2 &=& -x_1 x_2 + x_3 + u + w_1 \\ \dot{x}_3 &=& \alpha x_3 + u \\ y &=& x_1, \end{array}$

where w_1 is an unknown nonzero constant (disturbance) and α is a real constant. Note that in this problem you are allowed to identify stabilizability with controllability and detectability with observability.

- (b) When u = 0, for what α the state trajectory x(t) is always bounded?(6p) Answer: $\alpha < 0$.
- 5. Consider in a neighborhood N of the origin

 $\dot{x}_1 = (2+\alpha)x_1 + x_1^3 + x_2$ $\dot{x}_2 = \alpha x_1^3 - x_2 + x_3$ $\dot{x}_3 = f(x_1, x_2, x_3) + u$ $y = x_3,$

where α is a constant and f is C^{∞} with f(0, 0, 0) = 0.

(d) Is the system without the output exactly linearizable around the origin? . (6p) **Answer:** Yes.