
Solution to Final Exam of SF2842 Geometric Control
Theory
June 9 2017

Examiner: Xiaoming Hu, phone 790 71 80, mobile 070-796 78 31.

Allowed written material: the lecture notes, the exercise notes, your own class notes and
β mathematics handbook.

Solution methods: All conclusions must be properly motivated. Note: the problems are
not necessarily ordered in terms of difficulty.

Note! Your personnummer must be stated on the cover sheet. Number your pages and
write your name on each sheet that you turn in!

Preliminary grades: 45 points give grade E, 50 points D, 61 points C, 76 points B, and 91
points A.

1. Determine if each of the following statements is true or false and motivate (no
motivation no score) your answer briefly (for example, to show a statement is false,
a counter-example is enough).

Consider first a linear system

ẋ = Ax+Bu

y = Cx (1)

where x ∈ Rn, u ∈ Rm, y ∈ Rp.

(a) If system (1) is controllable and observable, then there exists always a friend F
of V ∗ such that A+BF is a stable matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4p)

Answer: False. For example, for a non-minimum phase SISO system.

(b) Let B have full column rank. If the only reachability subspace contained in
ker C is {0}, then the system is invertible. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4p)

Answer: True, since this implies R∗ = {0}, thus V ∗ ∩ Im B = {0}.
(c) Let p = m. If system (1) has relative degree (r1, · · · , rm) and the zero dynamics

is unstable, then the system can not be stabilized by any state feedback control
u = Fx. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4p)

Answer: False, since the system can still be controllable.

(d) Consider a controllable and observable (when w is set to 0) linear system

ẋ = Ax+Bu+ Ew

ẇ = Sw

y = Cx,
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where w is disturbance. If Im E is not contained in V ∗, then the full information
output regulation problem (here yr = 0 is the reference output) is never solvable.
(4p)

Answer: False. One can find counter example in the compendium.

(e) Consider a nonlinear single-input system

ẋ = f(x) + g(x)u

where x ∈ Rn, f, g ∈ C∞ and f(0) = 0. Let A = ∂f
∂x |x=0.

A necessary condition for the system to be exactly linearizable around x = 0 is
that the rank of matrix A is greater or equal to n− 1. . . . . . . . . . . . . . . . . . . (4p)

Answer: True, since the linearized system must be controllable and the rank
condition is a necessary condition for controllability.

2. Consider the system

ẋ =


−2 0 0 −1
0 −2 1 2
1 0 2 1
1 0 0 0

x+


1 0
−1 0
−1 1
1 1

u

y = (1 1 0 0)x.

(a) Compute V∗ and express all friends F of V∗. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (6p)

Answer: V∗ = {x ∈ R4 : x1+x2 = 0, x3+x4 = 0}, f22−f21 = 1, f24−f23 =
1
2 .

(b) Compute R∗ that is contained in ker C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4p)

Answer: R∗ = V∗.

(c) Can we find a friend F of V∗ such that (A + BF ) has all eigenvalues with
negative real parts? Justify your answer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (6p)

Answer: Yes.

(d) Let AF = A+ BF , and ΩF = (CT , AT
FC

T , · · · , (A3
F )

TCT )T . We formulate the
following optimization problem:

min
F∈R2×4

rank ΩF

What is the optimal value of rank ΩF ? What are the optimal solutions F ∗?
(4p)

Answer: The dimension of ker ΩF is maximized when F is a friend of V∗ and
in this case ker ΩF = V∗. Thus the optimal value of rank ΩF is 2.

3. Consider the system

ẋ =


−3 1 0 0
1 0 2 0
1 0 2 1
0 0 0 −1

x+


0 0
1 0
0 0
0 1

(
u1
u2

)
(
y1
y2

)
=

(
1 1 0 0
0 0 1 0

)
x.
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(a) What is the zero dynamics? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5p)

Answer: ż1 = −4z1.

(b) Is the noninteracting problem solvable? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5p)

Answer: Yes, since it has a relative degree (1, 2).

(c) Now suppose one of the two output sensors is out of order, namely we have
only one output for the system y1 available. What are the transmission zero(s)
now? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (10p)

Answer: -4. From a) we know sI −A B
−c1 0
−c2 0


does not have full rank only at s = −4. So by taking the last row away from
the matrix, the new matrix can only possibly have a rank deficiency at s = −4.
Pluging in s = −4 to the matrix and it does.

4. Consider:

ẋ = Ax+ bu+ pqw

ẇ = Γw

y = cx,

where α is a positive constant, w represents both disturbances and reference output
signals.

A =


0 1 0 0
−1 −2 −4 0
1 0 −1 −4
0 0 1 −2

 b =


0
0
1
0

 p =


0
1
1
0

 ,

and

Γ =

0 1 0
0 α 1
0 0 0

 q =
(
1 0 0

)
c =

(
1 0 0

)
.

Some facts you can use: eig(A) = {−0.82±1.8i,−1.68±0.87i}, (A, p) is controllable.

(a) Show the existence of an invariant subspace x = Π(α)w for the system when
u is set to zero (no exact Π is needed) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5p)

Answer: Since A is stable and Γ is antistable, there exists such an invariant
subspace.

(b) Show for almost all values of α, the reduced system

ẇ = Γw

y = cΠ(α)w

is observable, where both Γ and c are defined as above. What is the value of α
that makes the reduced system unobservable? . . . . . . . . . . . . . . . . . . . . . . . . . . . . (8p)



SF2842 Exam June 9 2017 Page 4 of ??

Answer: The reduced system is observable if no eigenvalue of Γ is a transmis-
sion zero of ẋ = Ax + pu, y = cx, since (A, p, c) is minimal. The transmission
zeros are 2 and -1. Therefore, for α = 2, the reduced system is not observable.

(c) For α = 2, solve the full information output regulation problem (find u), where
the tracking error is

e = y − (0 1 0)w.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (7p)

Answer: (A, b) is stabilizable since A is already stable. The system without w
can be converted into the normal form with relative degree 3. Therefore only
z1 = π1w needs to be solved by a Sylvester equation. Note: although 2 is a
transmission zero for (A, p, c), it is not a transmission zero for (A, b, c).

5. Consider in a neighborhood N of the origin

ẋ1 = x51 − αx1e
x3 sin(x2)

ẋ2 = x21 − sin(x2) + x3 − ex3 sin(x2)u

ẋ3 = ex3 cos(x2)u

y = x3,

where α is a real constant.

(a) Convert the system into the normal form (Note: after the new coordinates are
chosen, you only need to write down the right hand side of the normal form so
explicit that the zero dynamics can be determined). . . . . . . . . . . . . . . . . . . . . . (6p)

Answer: z1 = x1, z2 = ex3 sin(x2), ξ = x3....

(b) Analyze the stability of the zero dynamics in terms of α. . . . . . . . . . . . . . . . . (5p)

Answer: The zero dynamics is

ż1 = z51 − αz1z2

ż2 = (z21 − z2)
√

1− z22 .

Asymptotically stable if α > 0 otherwise unstable.

(c) Design a feedback control to stabilize the system for the case when the zero
dynamics is asymptotically stable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4p)

Answer: omitted.

(d) Is the system without the output exactly linearizable? . . . . . . . . . . . . . . . . . . . (5p)

Answer: No, since the linearized system is not controllable.


