

Solution to Final Exam of SF2842 Geometric Control Theory

14.00-19.00, March 12, 2019

Examiner: Xiaoming Hu, phone 790 71 80, mobile 070-796 78 31.

Allowed written material: the lecture notes, the exercise notes, your own class notes and β mathematics handbook.

<u>Solution methods</u>: All conclusions must be properly motivated. Note: the problems are not necessarily ordered in terms of difficulty.

<u>Note!</u> Your personnummer must be stated on the cover sheet. Number your pages and write your name on each sheet that you turn in!

Preliminary grades: 45 points give grade E, 50 points D, 61 points C, 76 points B, and 91 points A.

- 1. Determine if each of the following statements is *true* or *false* and **motivate** (no motivation no score) your answer briefly (for example, to show a statement is false, a counter-example is enough).
 - (a) Consider a square linear system

$$\dot{x} = Ax + Bu
y = Cx$$
(1)

where $x \in \mathbb{R}^n$, $u \in \mathbb{R}^m$, $y \in \mathbb{R}^m$.

Answer: False, for example, as long as the system has relative degrees and nontrivial zero dynamics, V^* is not zero.

Answer: False. In general, as long as R^* is strictly contained in V^* , there would be zeros.

(c) Consider

$$\dot{x} = Ax + Bu + Ew$$

 $\dot{w} = Sw$

y = Cx,

where w is disturbance, (A, B) is controllable, and no eigenvalue of S has negative real part. If Im E is contained in V^* , then the full information output regulation problem (here $y_r = 0$ is the reference output) is solvable. (4p)

Answer: False. DDP does not in general guarantee that there is friend F of V^* such that A + BF is stable. For output regulation we need to check if 0 is a zero of the system.

(d) Consider

$$\dot{x} = \sum_{i=1}^{m} g_i(x)u_i,$$

Answer: True. This is necessary for controllability.

(e) Consider a nonlinear single-input system

$$\dot{x} = f(x) + g(x)u$$

where $x \in \mathbb{R}^n$, $f, g \in \mathbb{C}^{\infty}$ and f(0) = 0. Let $A = \frac{\partial f}{\partial x}|_{x=0}$.

A necessary condition for the existence of an output mapping h(x) such that the system has a relative degree r at the origin is that $rank \ A \ge r - 1$(4p) **Answer:** True. We can see this easily in the normal form.

2. Consider the system

$$\dot{x} = \begin{pmatrix} -2 & 0 & 1 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} x + \begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 1 & 1 \\ 0 & 0 \end{pmatrix} u$$

$$y = (0 \ 1 \ 0 \ 0)x.$$

- (a) Find V^*(8p) **Answer:** $V^* = \{x : x_1 = x_2 = 0\}.$

3. Consider the system

$$\dot{x} = \begin{pmatrix} 2 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & -1 \end{pmatrix} x + \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ \alpha & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}
\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} x,$$

where α is a real constant.

(a) For what value of α is the noninteracting control problem solvable? (4p) **Answer:** $\alpha \neq 1$.

- (c) Suppose now the second input u_2 is taken away from the system, namely only u_1 is kept. What is the (transmission) zero(s) of the system now? (10p) **Answer:** $s_0 = 1$ when $\alpha = 0$, there are no zeros for other α . This can be done either by computing the rank of the system matrix directly, or by taking either y_1 or y_2 as output and computing the zeros for the respective siso systems. s_0 being a zero implies that it must be a common zero of the two siso systems. Further it must be $\frac{1-2\alpha}{1-\alpha}$ when $\alpha \neq 1$. This leads to the conclusion that we only need to check the rank of the system matrix for $\alpha = 0$ (s = 1) and $\alpha = \frac{2}{3}$ (s = -1).
- 4. Consider:

$$\dot{x} = Ax + bu + Pw
\dot{w} = \Gamma w
 y = cx,$$

where

$$A = \begin{pmatrix} 0 & 4 & 0 \\ -1 & -\alpha & -1 \\ 0 & 0 & -\alpha \end{pmatrix}, \ \Gamma = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}, \ b = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}, \ P = \begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 1 & 0 \end{pmatrix}, \ c = \begin{pmatrix} 1 & 0 & 0 \end{pmatrix}$$

and α is a **positive constant**.

- (b) Find the values of α , such that the reduced system

$$\dot{w} = \Gamma w$$
$$y = c\Pi(\alpha)w$$

Answer: $Pw = \bar{b}qw$, where $\bar{b} = [1 \ 0 \ 1]^T$ and $q = [1 \ 0]$. We can easily verify (c, A) and (q, Γ) are observable. Then we compute the zeros for (A, \bar{b}, c) , which are $-\alpha - 2$ and $-\alpha + 2$. This leads the conclusion that $\alpha \neq 1, 2$.

(c) Show for almost all values of α , the full information output regulation problem with the tracking error $e = y - w_2$ is solvable (a solution is not required). What are the values of α that make the problem unsolvable? (8p) **Answer:** We first compute the zero for (A, b, c), which is $2 - \alpha$. We can verify that $\alpha = 1$, 2 make the Sylvester equation unsolvable.

5. Consider in a neighborhood N of the origin

$$\begin{array}{rcl} \dot{x}_1 & = & x_2^3 + e^{x_3}u \\ \dot{x}_2 & = & -x_2 + \alpha x_3^3 + 2x_2^4 \\ \dot{x}_3 & = & x_2^3 + x_3^9 + 2e^{x_3}u \\ y & = & x_1, \end{array}$$

where α is a constant.