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Preface

Various versions of the notes have been used for the course “Geometric
Control Theory” given at the Royal Institute of Technology (KTH), and its
predecessor “Advanced Systems Theory”. The first version was written by
Anders Lindquist and Janne Sand, and was later revised and extended by
Jorge Mari. A major revision and addition was done by Xiaoming Hu in
2002.

I would like to express my gratitude to Dr Ryozo Nagamune and Docent
Ulf Jönsson for their careful reading and constructive comments on the 2002
version of the notes.

Some minor changes and updates have been made every year since 2002.
In 2006, some new material was added and the title was changed to “Geo-
metric Control Theory”; In 2012 Chapter 9 was rewritten.

Xiaoming Hu
October, 2012
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Notations and definitions

For easy reference we recall here some notations and definitions. Assume
X and Y are finite dimensional vector spaces over the real field. Let n be
the dimension of X , which is then isomorphic to Rn.

(1) Image space. Given a map A : X → Y, the image space of A is
defined as

Im A := {y ∈ Y : y = Ax, for some x ∈ X}.
It is a subspace of Y. We shall often use the same symbol for the
map A as for its matrix representation once bases in X and Y have
been chosen.

(2) Linear span. Given a vector space V over the fieldR, let v1, · · · , vm ∈
V. The span of these vectors is

span{v1, · · · , vm} = {α1v1 + · · ·+ αmvm|α1, · · · , αm ∈ R}.

(3) Null space. Given a map A : X → Y, the null space , or kernel, of
A is defined as

kerA := {x ∈ X : Ax = 0}.
It is a subspace of X .

(4) Preimage. Let W be any set of Y. The pre-image of W under the
map A is

A−1W := {x ∈ X : Ax ∈ W}.
Observe that A need not be invertible, so beware of the distinction
between preimage and inverse.

(5) A-invariant subspace. A subspace V of X is A-invariant if AV ⊆ V.
(6) Reachable subspace. Given the pair of conformable matrices An×n

and Bn×k, the reachable subspace of (A,B), denoted by 〈A| Im B〉,
is defined as 〈A| Im B〉 := Im Γ, where Γ is the reachability ma-
trix [BAB . . . An−1B]. This is an n × nk matrix. The reachable
subspace is A-invariant.

(7) 〈A| Im E〉. The minimal A-invariant subspace that contains the
subspace Im E is denoted by 〈A| Im E〉.
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x NOTATIONS AND DEFINITIONS

(8) Reachability subspace. Given a matrix pair (A,B), a subspace R is
called a reachability subspace if there are matrices F and G such
that

R = 〈A+BF | Im BG〉.

(9) Unobservable subspace. Given the matrix pair (C,A), the unobserv-
able subspace is defined as ker Ω, where Ω is the observability matrix⎡

⎢⎢⎢⎣
C
CA
...

CAn−1

⎤
⎥⎥⎥⎦

The unobservable subspace is A-invariant.

(10) The map A is injective if Ax1 = Ax2 implies x1 = x2.

(11) If A : X → Y and V ⊆ X , the restriction of A to V is denoted by
A|V .

(12) Given the two finite-dimensional subspaces V and W, the vector
sum is defined as

V +W := {v +w : v ∈ V, w ∈ W}.
If V and W are linearly independent we write the sum as V ⊕W.
Note that in these notes ⊕ does not denote orthogonal vector sum!

(13) Hypersurface. SupposeN is an open set in Rn. The setM is defined
as

M = {x ∈ N : λi(x) = 0, i = 1, . . . , n−m}
where λi are smooth functions.

If rank

⎡
⎢⎣

∂λ1
∂x
...

∂λn−m

∂x

⎤
⎥⎦ = n−m ∀x ∈M , then M is a (hyper)surface

of dimension m.

(14) Lie derivative. In local coordinates, Lie derivative is represented by

Lfλ :=

n∑
i=1

∂λ

∂xi
fi,

where f is a vector and λ is a scalar function.

(15) Lie bracket. Lie bracket of the two vector fields f and g is defined
according to the rule:

[f, g](λ) := LfLgλ− LgLfλ.
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In local coordinates the expression of [f, g] is given as

∂g

∂x
f − ∂f

∂x
g.




