

SF2842: Geometric Control Theory  $Homework \ 1$ 

Due February 11, 16:50pm, 2016 You may use  $\min(5,(\text{your score})/4)$  as bonus credit on the exam

**1.** Consider the system

$$\dot{x} = \begin{pmatrix} -2 & 0 & 0 & -1 \\ 0 & -2 & 1 & 2 \\ 1 & 0 & 2 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix} x + \begin{pmatrix} 1 & 0 \\ -1 & 0 \\ -1 & 1 \\ 1 & 1 \end{pmatrix} u$$
$$y = (1\ 1\ 0\ 0)x.$$

- (a) Compute  $\mathcal{V}^*$  and express all friends F of  $\mathcal{V}^*$ .....(2p)
- (b) Compute  $\mathcal{R}^*$  that is contained in ker C.....(2p)
- (c) Can we find a friend F of  $\mathcal{V}^*$  such that (A + BF) has all eigenvalues with negative real parts?.....(3p)
- 2. Consider
  - $\dot{x} = Ax + Bu$ y = Cx,

where  $x \in \mathbb{R}^n$ ,  $u \in \mathbb{R}^m$  and  $y \in \mathbb{R}^p$ .

- (a) Show the controllable subspace is (A+BF)-invariant for any F.....(2p)
- (b) Assume further that  $CA^kB \neq 0$ , for some k < n, and (C, A) is not observable. Show the unobservable subspace ker  $\Omega$  is not (A+BF)-invariant for all F.(3p)
- (c) Suppose (C, A) is observable and the dimension of  $\mathcal{V}^*$  is greater or equal to one. Show it is not possible to express a friend F of  $\mathcal{V}^*$  as F = LC, namely it is not possible to use output feedback to make  $\mathcal{V}^*$  invariant......(2p)
- **3.** Consider

 $\begin{aligned} \dot{x}_1 &= -x_1 + x_2 + x_3 + x_4 \\ \dot{x}_2 &= -x_1 - \alpha u \\ \dot{x}_3 &= -x_2 - 2x_3 + u \\ \dot{x}_4 &= x_2 - u \\ y &= x_3 + x_4, \end{aligned}$ 

where  $\alpha$  is a constant.

- (a) Convert the system into the normal form and compute the zero dynamics. (2p)
- (b) Computer  $\mathcal{V}^*$  and  $\mathcal{R}^*$  in ker C.....(2p)
- (c) For what  $\alpha$  we can find a friend f of  $\mathcal{V}^*$  such that (A + bf) is a stable matrix? (2p)