SF2842: Geometric Control Theory

Homework 1

Due February 11, 16:50pm, 2016
You may use $\min (5,($ your score $) / 4)$ as bonus credit on the exam

1. Consider the system

$$
\begin{align*}
\dot{x} & =\left(\begin{array}{cccc}
-2 & 0 & 0 & -1 \\
0 & -2 & 1 & 2 \\
1 & 0 & 2 & 1 \\
1 & 0 & 0 & 0
\end{array}\right) x+\left(\begin{array}{cc}
1 & 0 \\
-1 & 0 \\
-1 & 1 \\
1 & 1
\end{array}\right) u \\
y & =\left(\begin{array}{lll}
1 & 1 & 0
\end{array} 0\right) x . \tag{2p}
\end{align*}
$$

(a) Compute \mathcal{V}^{*} and express all friends F of \mathcal{V}^{*}
(b) Compute \mathcal{R}^{*} that is contained in $\mathrm{ker} C$.
(c) Can we find a friend F of \mathcal{V}^{*} such that $(A+B F)$ has all eigenvalues with negative real parts?
2. Consider

$$
\begin{aligned}
\dot{x} & =A x+B u \\
y & =C x,
\end{aligned}
$$

where $x \in R^{n}, u \in R^{m}$ and $y \in R^{p}$.
(a) Show the controllable subspace is ($\mathrm{A}+\mathrm{BF}$)-invariant for any F
(b) Assume further that $C A^{k} B \neq 0$, for some $k<n$, and (C, A) is not observable. Show the unobservable subspace ker Ω is not (A +BF)-invariant for all F.(3p)
(c) Suppose (C, A) is observable and the dimension of \mathcal{V}^{*} is greater or equal to one. Show it is not possible to express a friend F of \mathcal{V}^{*} as $F=L C$, namely it is not possible to use output feedback to make \mathcal{V}^{*} invariant
3. Consider

$$
\begin{aligned}
\dot{x}_{1} & =-x_{1}+x_{2}+x_{3}+x_{4} \\
\dot{x}_{2} & =-x_{1}-\alpha u \\
\dot{x}_{3} & =-x_{2}-2 x_{3}+u \\
\dot{x}_{4} & =x_{2}-u \\
y & =x_{3}+x_{4},
\end{aligned}
$$

where α is a constant.
(a) Convert the system into the normal form and compute the zero dynamics. (2p)

(c) For what α we can find a friend f of \mathcal{V}^{*} such that $(A+b f)$ is a stable matrix? (2p)

