

KIII Matemat

 $\begin{array}{l} {\rm SF2842: \ Geometric \ Control \ Theory} \\ {\rm Homework \ 2} \end{array}$

Due February 22, 16:50pm, 2017

1. Consider the system

$$\dot{x} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -2 & 1 & 0 \\ 2 & 0 & 0 & 1 \\ 0 & 0 & 1 & -1 \end{pmatrix} x + \begin{pmatrix} \alpha & 1 \\ 2 & 1 \\ \alpha & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$$
$$\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} x,$$

where α is a real constant.

- (a) For what values of α is the noninteracting control problem solvable?(2p)
- (c) Suppose now the first output y_1 is taken away from the system, namely only y_2 is kept. What is the (transmission) zero(s) of the system now if $\alpha = 2$? (3p)
- **2.** Consider the system

 $\begin{array}{rcl} \dot{x}_1 &=& x_2 \\ \dot{x}_2 &=& x_3 \\ \dot{x}_3 &=& -x_1 - 3x_2 - 3x_3 + w_1 \\ \dot{w}_1 &=& 2w_2 \\ \dot{w}_2 &=& -2w_1 \\ y &=& c_1 x_1 + c_2 x_2 + x_3, \end{array}$

where c_1 , c_2 are real constants and $c_1 - c_2 + 1 \neq 0$.

- (a) Compute the invariant subspace $x = \Pi w$. [2p]
- (b) For what value(s) of c_1, c_2 is the above system (consisting of x and w) unobservable? Explain why. [2p]
- (c) Can we find c_1, c_2 such that $y(t) = w_1(t)$ in the steady state? [2p]

3. Consider a control system subject to disturbance:

$$\begin{array}{rcl} \dot{x}_1 &=& x_2 \\ \dot{x}_2 &=& -2x_1 - x_2 + x_3 + u + 2w_1 \\ \dot{x}_3 &=& \alpha x_3 + u \\ y &=& x_1, \end{array}$$

where w_1 is an unknown nonzero constant (disturbance) and α is a real constant.

- (d) For $\alpha = 2$, solve the full information output regulation problem for $y_r = 0$. [3p]