SF2842: Geometric Control Theory

Homework 2

Due February 22, 16:50pm, 2017

1. Consider the system

$$
\begin{aligned}
\dot{x} & =\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -2 & 1 & 0 \\
2 & 0 & 0 & 1 \\
0 & 0 & 1 & -1
\end{array}\right) x+\left(\begin{array}{ll}
\alpha & 1 \\
2 & 1 \\
\alpha & 1 \\
0 & 0
\end{array}\right)\binom{u_{1}}{u_{2}} \\
\binom{y_{1}}{y_{2}} & =\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) x,
\end{aligned}
$$

where α is a real constant.
(a) For what values of α is the noninteracting control problem solvable? \qquad
(b) What is the (transmission) zero(s) of the system when the noninteracting control problem is solvable?
(c) Suppose now the first output y_{1} is taken away from the system, namely only y_{2} is kept. What is the (transmission) zero(s) of the system now if $\alpha=2$? (3p)
2. Consider the system

$$
\begin{aligned}
\dot{x}_{1} & =x_{2} \\
\dot{x}_{2} & =x_{3} \\
\dot{x}_{3} & =-x_{1}-3 x_{2}-3 x_{3}+w_{1} \\
\dot{w}_{1} & =2 w_{2} \\
\dot{w_{2}} & =-2 w_{1} \\
y & =c_{1} x_{1}+c_{2} x_{2}+x_{3},
\end{aligned}
$$

where c_{1}, c_{2} are real constants and $c_{1}-c_{2}+1 \neq 0$.
(a) Compute the invariant subspace $x=\Pi w$. [2p]
(b) For what value(s) of c_{1}, c_{2} is the above system (consisting of x and w) unobservable? Explain why. [2p]
(c) Can we find c_{1}, c_{2} such that $y(t)=w_{1}(t)$ in the steady state? [2p]
3. Consider a control system subject to disturbance:

$$
\begin{aligned}
\dot{x}_{1} & =x_{2} \\
\dot{x}_{2} & =-2 x_{1}-x_{2}+x_{3}+u+2 w_{1} \\
\dot{x}_{3} & =\alpha x_{3}+u \\
y & =x_{1},
\end{aligned}
$$

where w_{1} is an unknown nonzero constant (disturbance) and α is a real constant.
(a) Is the disturbance decoupling problem (DDP) solvable?
(b) When $u=0$, show that if $\alpha<0$, then for all initial conditions, $y(t) \rightarrow w_{1}$ as $t \rightarrow \infty$.
(c) For what values of α is the error feedback output regulation problem guaranteed to be solvable if we choose $y_{r}=0$ as the reference output (you do not need to design the controller)?
(d) For $\alpha=2$, solve the the full information output regulation problem for $y_{r}=0$. [3p]

