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Preface

This paper was written as a master thesis in discrete mathematics at the
Mathematics Department of the Royal Institute of Technology. I was tutored
and examined by professor Svante Linusson within the Combinatorics Group.

Abstract

Two mathematical games are contructed from the children’s game memory.
One game, named Terminating memory is constructed as a two player game
with rules as close to the children’s game as possible. The most significant
change is made in order to make the game terminate. It turns out that there
are non-trivial elements of strategy in Terminating memory. Depending on
the expected number of turn overs, i.e. the number of times the lead is lost,
the strategy seems to be to try to force the opponent to reach a known losing
position which is when the last turn over occurs. However, this could not be
proven generally, but is computed for all games with less than 200 pairs.
A second game of memory that complies with the rules of combinatorial
games was therefore contructed, in order to determine which elements are
important to the previous game, Terminating memory. This game, Combi-
natorial memory was generally solved as game equivalent to a sequence of
weighted misère nim games. A hypothesis of implications of this to Termi-
nating memory was presented. It is suggested that the strategy will depend
on whether there are expected to be odd or even number of nim games left, of
which the last game is probably the largest. Both player are trying to reach
a position where they will get the last collect sequence. This is consistant
with the main conjecture of terminating memory. A general way to compute
whether odd or even number of remaining nim games is most likely is needed
to make this result useful.
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Chapter 1

Introduction

1.1 True memory

Memory game is a children’s game, where two or more players collect pairs
of cards from a commonly shared board of hidden cards. All cards consist of
matching pairs. In every turn, each player turns two cards face up. If they
match, the player may collect the pair and make another try. If the two cards
fail to make a pair, the player ends his turn. The game ends when all pairs
have been collected. Neither the objective nor the exact rules are generally
stated in a clear mathematical way. Exact rules of when a player turn is end
or how many players there are etc. must be stated. The original game was
therefore translated into two different games.

1.2 Terminating memory

In chapter 2 a game called terminating memory is constructed. This game
tries to be as close to true memory as possible. Most of the limitations are in-
terpretations of the children game. The objective for constructing this game
is to determine an optimal strategy when playing the game described in the
above section, the true memory game. However some move that are allowed
in true memory are disallowed in terminating memory in order to make the
game end. No such condition is imposed on the players in true memory.
Also the players of terminating memory are slightly different from the typ-
ical five year old player of true memory. Both players are assumed to have
perfect memory and try to collect as many pairs as possible, over the entire
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2 CHAPTER 1. INTRODUCTION

game, rather than the slightly more irrational moves of a child that often
but not always try to collect as many pairs as possible in the same turn.
The general recursion is stated in section 2.2. In section 2.3 some examples
and initial results are described. In section 2.4, computed results shows that
there is a non-trivial element of strategy in terminating memory, as the com-
puted strategy table (Table 2.1) shows, the strategy depends on the parity
of remaining unknown cards. The optimal strategy of the game could not be
generally determined, even though the rather simple pattern seemed to exist.
A conjecture that strategy will depend only on the number of turn-overs left
in the game is proposed in section 2.5.

1.3 Combinatorial memory

In this section, tools of determine strategy of terminating memory is devel-
oped by changing the game into an entirely combinatorial game, as described
in for example Winning ways, 2nd ed., Berlekamp et al. 2001. These games
are simpler to analyse but may generate insight of what the outcome of the
general game depends on. In section 3.1, some general background to com-
binatorial games is given, followed in section 3.2 by a special case of nim
that occurs in the constructed game. Section 3.3 displays some examples of
how a board of memory should be interpreted as combinatorial memory. In
the following sections, combinatorial memory is generally solved, any game
of combinatorial memory is game equivalent to a sequence of misère nim
games, weighted with the number of pairs that may be collected after every
nim game. Even though this game could be generally solved, the insights
learned generated tools too heavy to be used to generally solve terminating
memory within the scope of this paper. However, a hypothesis could be put
forward, stating that if the expected number of remaining nim games could
be calculated, the conjectures of terminating memory could be verified.



Chapter 2

Terminating memory

2.1 Introduction

The original children’s game of memory, as described in section 1.1, does not
uniquely define a computable game. In this chapter, a computable variant of
memory is defined and analysed. It is called terminating memory since the
most significant limitations is made in order to have determined maximum
number of turns before it ends.
Other changes are that a fixed number of players, two, is used and that
both players will have perfect memory, i.e. any card that is revealed in
a turn is henceforth considered known to both players. Both players are
assumed to play optimal, considering the known information, and with the
same objective.
There are two possible objectives, to maximise the probability to collect
more pairs than the opponent, or to maximise the expected number of pairs
collected. In many cases, the objectives will coincide. In order to be able to
disregard game history, the object in terminating memory will assume that
the target is to maximise the expected number of pairs collected.

2.1.1 Termination

In order to determine what is needed to make every possible board of memory
to terminate, one first have to conclude when a game memory ends. Obvi-
ously, this is when there are no more pairs on the board. Assuming that both
players play according to the objective to collect as many pairs as possible,
any known two cards that make a pair will be collected. Thus, the limitation
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4 CHAPTER 2. TERMINATING MEMORY

needed must force the game not to enter a stalemate where no unknown card
is opened. In an impartial game, that is when both players are allowed to do
the same moves, no moves where a player ends his turn in the same position
as he started in is allowed. Both players will be allowed to make the same
moves, given a game situation. If any of the players want to make a move
that does not open an unknown cards; which does not change the board,
since no pair can be collected and no unknown card is opened; neither player
will change the board and the game will not end. The allowed moves will be
stated in section 2.1.3.

2.1.2 Optimal playing

Not only the objective, but also the premises of how the best way to reach the
objective is calculated must be clear. Both players are assumed to play opti-
mal playing, that is, they will make the best allowed move to maximise the
expected number of pairs collected under the assumption that the opponent
may do the same. Neither player will make any mistake, thus making any
move only in order to invite a mistake non-optimal. Optimal play returns
the best possible result against any opponent, it benefits from mistakes but
uses no tactics to invite to them.

2.1.3 Definitions

In order to be able to describe the game in a uniform way, some definitions
are needed.

Describing variables. In every state of memory, the information needed
is given by a description of the board. The board can be described by
any two variables that give the size of the board and the relation of
known and unknown cards. Due to game mechanics as described in
section 2.3, size of the board is given by the number of pairs on the
board, the amount of known information is somewhat contra intuitively
represented by a variable called unknown pairs. An unknown pair is a
pair of which none of the cards are known. In the beginning, all pairs
are unknown. When an unknown card is opened it either matches a
previously opened card, leaving one pair less on the board, or fails to
match. Then the opened card belonged to an unknown pair that is
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now broken, leaving the same number of pair on the board, but one
less unknown pair.

Position (n, j) is describing a state of the board, n is the number of pairs
on the board, j is the number of unknown pairs.

Expected number of pairs, Ej
n is the number of pairs the player that

begins his turn in the position (n, j) is expected to collect through
the remaining game under the assumtion that both players are playing
optimal play.

Expected share of the pairs, E
j
n

n
is the same as Ej

n, but related to the
size of the board.

Left and Right player. In order to efficiently describe a game sequence,
the starting player is named Left and the other player is named Right.

Match: reveal an unknown card that makes a pair together with a previ-
ously known card.

Miss: reveal an unknown card that does not make a pair with any previ-
ously known card.

Optimal player

The expected number of pairs for Left to collect, given a position, is the num-
ber of pairs Left will collect in this turn, plus the number of pairs remaining
at the end of Lefts turn, minus the number of pairs Right is expected to
collect given the position when Lefts turn is ended. Since Left and Right
play are assumed to play in the exact same manor, the expected value func-
tion of Left and Right in the same position, is the same. Thus, the expected
number of pairs Left can expect to collect given a starting position can be
recursively computed, as soon as any position that can be reached from the
starting position is computed.

Strategies

In order to be able to calculate the best possible move in any position, the
allowed moves must be stated. Since the choice of unknown card is irrelevant,
the player can only choose whether to open a known card or an unknown
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card. When the first card is opened, the Optimal player is not allowed to
choose the second card if it is possible to match with a known card. This
leaves the following strategies,

Bad: open a known card, then an unknown that may match,

Safe: open an unknown card, then a known card, matching if possible,

Risky: open an unknown card, then match if possible, i.e. an known
matching card if possible, otherwise an unknown card that may match,
and

Passive open two, known, unmatching cards.

Bad is dominated by safe. Without the information of the revealed unknown
card, the choice of the known card is random instead of chosen as matching
or unmatching. If the revealed unknown card matches a known card, the pair
may be lost if the Bad strategy is used but not if the Safe strategy is used.
Otherwise, Bad and Safe strategy will have the same outcome. Therefore,
the Bad strategy is henceforth disregarded.
Safe is not dominated by any other strategy and also fulfils the termination
condition1, at least one unknown card is revealed.
Risky is not dominated by any other strategy and also fulfils the termination
condition, at least one unknown card is revealed.
Passive is not dominated by any other strategy, it is actually quite easy to
determine when it should be used. When the expected share of the pairs
with Safe or Risky strategy is less than half, the Passive strategy will be the
best strategy, since no move by Left from the position is better for the Left
than the Right.
However, Passive strategy does not reveal any information and thus does
not fulfil the termination condition. In fact since terminating memory is
impartial; that is, given a position, both Left and Right are allowed to make
the same moves; and the Passive move does not alter position, any Passive
move by Left will be followed by Passive move by Right. This also confirms
the need of the termination condition. The Passive strategy will hence be
disallowed.
The element of strategy disappears when no choice is possible or needed.
No choice is possible when there are either no unknown cards or no known

1Defined in section 2.1.1
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cards. When there are no unknown cards left, the game is ended, thus can
not occur. However, in any position where the last known pair is matched,
or when the game starts, there will be no known cards to choose. Thus, in
any such position, the player in turn must choose two unknown cards.
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2.2 Recursion

As stated in section 2.1.3, the expected value function Ej
n can be recursively

calculated. Since Left player will chose the optimal strategy, the recursion
can be stated as

Ej
n = max

(

safeEj
n, riskyEj

n

)

,

where safeEj
n is the expected number of collected pairs if the Safe strategy

is used and riskyEj
n is the expected number of collected pairs if the Risky

strategy is used. Thus, there are two different recursions depending on choice
of strategy.

2.2.1 Risky strategy

In terms of miss and match, there are three possible outcomes. If the first
card is matching, the second card is automatically chosen, if the first card
misses, the second choice of card may match or miss. However if the second
card is matching, it may match either a previously known card, or the first
opened card. Thus there are four possible outcomes of a risky move, summing
together to

riskyEj
n =

4j(j − 1)

(n + j)(n + j − 1)
(n − Ej−2

n ) +
2j

(n + j)(n + j − 1)
(1 + E

j−1

n−1) +

+
2j(n − j)

(n + j)(n + j − 1)
(n − (1 + E

j−1

n−1)) +
n − j

n + j
(1 + E

j
n−1). (2.1)

Miss both cards

If Left choose to make the risky move and both cards miss, Right will start
his turn in the position (n, j − 2). The probability of this is the probability
to first chose one of the 2j cards belonging to an unknown pair, then one of
the 2(j− 1) cards belonging to remaining unknown pairs, out of the possible
n+ j cards and n+ j− 1 cards, respectively. No pairs are collected by either
player. Left can expect to collect the pairs Right does not from position
(n, j − 2). This results in the following addition to the expected value of the
Risky strategy,

4j(j − 1)

(n + j)(n + j − 1)
(n − Ej−2

n ).
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Miss first card, match second

If the first card misses, but the second match with the first, Left player may
collect the pair and make another move, now with one pair and one unknown
pair less. The number of cards among the n + j − 1 to chose from to match
the first, is only one. This results in the following addition to the expected
value of the Risky strategy,

2j

(n + j)(n + j − 1)
(1 + E

j−1

n−1).

Miss first card, match second badly

More likely than to match the first opened card however, is to match any of
the n− j previously known cards. The Right player will then collect the now
known pair and start the next move. This results in the following addition
to the expected value of the Risky strategy,

2j(n − j)

(n + j)(n + j − 1)
(n − (1 + E

j−1

n−1)).

Match first card

The last possible outcome is that the first card actually match one of the
n − j known cards. Then Left player receive a pair and may move again.
This results in the following addition to the expected value of the Risky
strategy,

n − j

n + j
(1 + E

j
n−1).

Sum of possible outcomes from a Risky strategy

There are no other possible outcomes of a Risky strategy, the expected num-
ber of pairs will be the sum of the terms stated in sections 2.2.1 - 2.2.1,

riskyEj
n =

4j(j − 1)

(n + j)(n + j − 1)
(n − Ej−2

n ) +
2j

(n + j)(n + j − 1)
(1 + E

j−1

n−1) +

+
2j(n − j)

(n + j)(n + j − 1)
(n − (1 + E

j−1

n−1)) +
n − j

n + j
(1 + E

j
n−1).
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2.2.2 Safe strategy

When the Safe strategy is used, there is only one random event, since only
one unknown card is open, no matter what it turns out to be. If it matches
a previously known card, Left may collect a pair and make new move. Oth-
erwise a non-matching, known card is chosen and Right will make a move.
This results in the following recursion

safeEj
n =

2j

n + j
(n − Ej−1

n ) +
n − j

n + j
(1 + E

j
n−1). (2.2)

Miss first card

In order to miss the first card, the opened card must be one of the 2j cards
initially belonging to an unknown pair. Then Right will start next turn,
with one less unknown pair on the board, giving the following addition to
the expected value function

2j

n + j
(n − Ej−1

n ).

Match first card

Otherwise, Left will match a pair consisting of one of the known cards and
the first card. Left will then collect the pair and make another move, with a
board consisting of one less pair, giving the following addition to the expected
value function,

n − j

n + j
(1 + E

j
n−1).

Sum of possible outcomes from a safe strategy

Summing the two possible outcomes into the expected value function if the
Safe strategy is used, results in the following expression,

safeEj
n =

2j

n + j
(n − Ej−1

n ) +
n − j

n + j
(1 + E

j
n−1).

The total of Ej
n is a maximum of a two variable recursion formula with non-

constant coefficient. There is no sure general way of concluding an explicit
expression.
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2.3 Examples

The strategic value of different moves in memory might not be obvious, there-
fore some small examples are given to display some game mechanics.

2.3.1 Four pairs, n = 4

No unrevealed pair, j = 0

Assume Left player starts his turn in the position (4, 0). Then the board
will be as figure 2.1 describes. Since there are no unknown pairs, all four

? ? ?

?

Known card

Unknown card

First chosen card

Figure 2.1: Picture of a board with 4 pairs with no unrevealed pairs

of the unknown cards will match a known card. Since both allowed move
Left can do includes opening an unknown card, any move Left may choose
will result in first choosing a unknown, matching card and move again. As
the recursion states, Left will collect a pair and move again in the position
(3, 0), from which all allowed moves also have determined outcome, all three
unknown cards will match a known. Thus, if Left starts his turn in the
position (4, 0), he will collect all four pairs in his turn, E0

4 = 4.

One unknown pair, j = 1

Assume Left player start in the position (4, 1), as shown in figure 2.2. The
position (4, 1) is slightly more difficult to evaluate, since the first card may
both miss and match. If the first card match, however since there are no
difference in strategy when the first card match; both by Safe and Risky
strategy, Left player claims the pair; assume that the first card miss. Then
the last unknown pair is broken. If Left play by the Safe strategy, Right will
start his turn in the position (4, 0) and collect all pairs. If Left instead choose
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? ? ? ?

?

Known card

Unknown card

First chosen card

Figure 2.2: Picture of a board with 4 pairs with one unrevealed pair

the Risky strategy, the probability is 1

4
that the first opened card and second

opened card match. Then Left collect a pair and make his next move in the
position (3, 0) and, by the same argument as in section 2.3.1, will collect the
remaining three pairs. Thus, instead of playing the Safe strategy and lose all
the remaining pair, Left can play the Risky move, with an expected number
of collected pair of 1. Thus Left will make the Risky move. As shown in
section 2.3.2, the Safe move is never useful when the last unknown pair is
revealed. The exact value of E1

4 can then be computed by recursion, E1
4 = 2

Two unknown pairs, j = 2

The last example in this section is when Left starts in the position (4, 2). As
in section 2.3.1, the difference in the Safe and Risky strategies occurs only
when the first card misses. The analysis is more and more dependant of the
value of the expected value functions, defined in section 2.2. Already when
the board is this small, at least an estimation of the position (3, 1) compared
to (4, 1) and (4, 0) is needed to determine strategy.

The best strategy can be determined by computing the difference between
the choices,

safeE2
4 −

riskyE2
4 = 4

6

(

(4 − E1
4) −

1

5
(2(4 − E0

4) + (1 + E1
3) + 2(4 − 1 − E1

3))
)

= 4

6

(

4 − E1
4 −

7−E1
3

5

)

= 4

30

(

13 − 5E1
4 + E1

3

)

= 4

30

(

3 + E1
3

)

> 0
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? ?? ?

?
?

Known card

Unknown card

First chosen card

Figure 2.3: Picture of a board with 4 pairs with two unrevealed pairs

Thus the strategy should be safe. However both E0
4 = 4 and E1

4 = 2 were used
to determine strategy. The need to determine strategy within the recursion
is a problem that must be solved, by explicit computation of the recursion
or by some adequate estimations of Ej

n. The computed results show that the
function is not very smooth, making this very difficult to do in general.

2.3.2 Arbitrary many pairs, n free

No unknown pair, j = 0

When there are no unknown pairs, any opened first card must match one
of the known cards. This follows from a simple proof of counting. There
are no other unknown cards left, except cards matching the known cards. If
there were some other unknown card, it must be belonging to an unknown
pair, but there are none. Thus, independent of strategy, if Left starts in any
position (n, 0), Left will collect all the n remaining pairs,

E0

n = n.

Proof. If n = 1, Left will collect the pair, by opening the two remaining
cards. Assume the statement to be true for some n.
Then, by induction it follows,

E0

n+1 = 1 + E0

n = n + 1,

since from any position (n + 1, 0), Left will collect the next pair and make
another move.
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One unknown pair, j = 1

The calculation of E0
n renders it possible to recursively compute the functions

Ej
n for larger, fixed j by standard methods of solving recursions with rational

coefficients in one variable, which can be found in for example Enumerative
Combinatorics I, chapter 4 [2], but only when the strategy is known and
equal for all n involved in the recursive calculation.

Proposition The optimal strategy in any position (n, 1) is risky strategy.

Proof. If j = 1 when Left starts his turn, he will have to make a choice
of strategy only when the last unknown pair is broken. If he uses the Safe
strategy, Right will collect the all remaining pairs. If Left chooses the Risky
strategy, he may match his first card and collect at least one more pair. Actu-
ally, if Left collects the last unknown pair, Left will collect all the remaining
pair. Nonetheless, if the Risky strategy is used, Left has a possibility to
collect at least one pair. If the Safe strategy is used, Left will not collect any
more pairs.

The initial values and the recursion is needed in order to calculate the
explicit function.

E1

1 = 1

E1

n =
2

n + 1

n

n
+

n − 1

n + 1
E1

n−1

The resulting function is

E1

n =
2 + n

3
.

Two unknown pairs, j = 2

When both E0
n and E1

n is calculated, all parts of the recursion in section 2.2
makes sense. Thus, as soon as the strategy can be determined, the explicit
expression of E2

n can be computed by the same methods as in section 2.3.2.
No initial values are needed since only positions where Ej

n is already com-
puted can be reached.

Proposition The optimal strategy in any position (n, 2) is safe strategy.
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Proof. By the same initial expression as in section 2.3.1, the strategy decision
is made by deciding the sign of

(n − E1

n) −
2 · (n − E0

n) + E1
n−1 + 1 + (n − 3)(n − (E1

n−1 + 1))

n + 1

Then insert the functions E0
n and E1

n already computed,

2(n + 1)(n − 1) + 0 + 2 + (n − 1) + 3 + (n − 3)(2(n − 2) − 3)

3(n + 1)
=

4n2 − 14n + 24

3(n + 1)
> 0 ∀n ≥ 2

Thus the strategy is Safe, for all possible n, since at least 2 pairs are needed
in order to have 2 unknown pairs.

The initial value is given by the only possible recursion from (2, 2) would be
used, which is the same as if Risky strategy was chosen, since there is no
known cards to choose. The resulting function is

E2

n =
11n − 12

15

More unknown pairs,

By these methods, every value of Ej
n can be straightforward computed, but

it also shows that the maximum function in the recursion need attention in
every step in j. One solution to this problem is most likely some induction
where both strategy and expected value function can be generally determined
in every step. This can probably be done since there seems to be a very clear
pattern of strategy, as shown in the next section. However, it was found to be
beyond the scope of this paper. The function Ej

n are given in the Appendix
for all n, j ≤ 16. The behaviour of Ej

n is monotonous in n for fixed j when
j > 17 which might be important when determining general strategy.
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2.4 Computed results

The solution of both the strategy function and the expected value functions
can be recursively computed. In section 2.4.1, a table of the strategy function
is given and in section 2.4.2, the generated expected value functions, given the
calculated strategies, is stated. In the last part of this section, a simulation
is done where a player playing according to the calculated strategy function
faces several simple minded opponents.

2.4.1 Strategy for states with at most 20 pairs

In table 2.1, the strategy for any position with at most 20 pairs is given.
The chosen strategy is given a label {1, 0}, where 1 states that the Risky
strategy should be used and 0 that Safe strategy should be used. If # is used
instead, it states that either no choice of strategy was possible, since there
were no known cards to choose from, or that no choice was needed, since
both strategies have the same outcome.
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Strategy table for optimal play
N = number of pairs on board

J = number of unknown pairs

Chosen strategy, 1 : risky, 0 : safe, # : no choice

J 0 1 2 3 4 5 6 7 8 9 ...

N

2 # 1 #

3 # 1 0 #

4 # 1 0 1 #

5 # 1 0 1 0 #

6 # 1 0 1 0 0 #

7 # 1 0 1 0 0 1 #

8 # 1 0 1 0 0 1 0 #

9 # 1 0 1 0 0 0 0 0 #

10 # 1 0 1 0 1 0 1 0 1 #

11 # 1 0 1 0 1 0 1 0 1 0 #

12 # 1 0 1 0 1 0 0 0 1 0 1 #

13 # 1 0 1 0 1 0 0 0 1 0 1 0 #

14 # 1 0 1 0 1 0 0 0 1 0 1 0 1 #

15 # 1 0 1 0 1 0 0 0 1 0 1 0 1 0 #

16 # 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 #

17 # 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 #

18 # 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 #

19 # 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 #

20 # 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 #

Table 2.1: The strategy, except for smaller n and j, seems to be to choose
the Risky strategy when j is odd and the Safe when j is even.

The pattern of the table continues, computation with as many as 200
pairs, renders that, except for very small boards, the strategy should be Safe
when j is even and Risky when j is odd.

Conjecture 1 Except for smaller boards, n < 16, the optimal strategy
is to use the risky strategy when j is odd and safe strategy when j is even.

Conjecture 2 Except for smaller j, j < 18, E
j
n

n
is monotone in n for fixed j,

growing if j is even and declining if j is odd.

The second conjecture is probably needed in order to generally determine
choice of strategy, thus establishing the actual recursion in every step.
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2.4.2 Expected share of pairs for states with at most 20

pairs

In this section, the calculated expected value functions are plotted. Instead

of Ej
n, for fixed j, E

j
n

n
is plotted, in order to show favourability of a certain

position (n, j). The general behaviour is that after some certain n, every
function with odd j is declining and every function when j is even is growing.
For the displayed even functions the largest needed such n is 8, for the odd
functions the largest needed n is 18. As stated in the second conjecture of
section 2.4.1 this can be used in order to prove the generality of the first
conjecture of the same section.
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Figure 2.4: Except for j = 4, all even expected share functions are growing
for all n. For larger n, all functions are growing.



2.4. COMPUTED RESULTS 19

0 2 4 6 8 10 12 14 16 18 20

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of pairs on the board

E
xp

ec
te

d 
sh

ar
e 

of
 th

e 
pa

irs

 

 

E
1

n

n

E
5

n

n

Figure 2.5: The share when j mod 4 = 1 seems to be declining from some
rather small n
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Figure 2.7: The trend of growing expected share functions seems to be more
dominant when even j grows larger

8 10 12 14 16 18 20
0.5

0.5005

0.501

0.5015

0.502

0.5025

Number of pairs on the board

E
xp

ec
te

d 
sh

ar
e 

of
 th

e 
pa

irs

 

 

E
9

n

n

E
13

n

n

E
17

n

n

Figure 2.8: The trend when odd j mod 4 = 1 is also more dominant for larger

j, all displayed E
j
n

n
for such j are monotonously declining when n ≥ 11



2.4. COMPUTED RESULTS 21

10 11 12 13 14 15 16 17 18 19 20
0.5001

0.5002

0.5003

0.5004

0.5005

0.5006

0.5007

0.5008

Number of pairs on the board

E
xp

ec
te

d 
sh

ar
e 

of
 th

e 
pa

irs

 

 

E
11

n

n

E
15

n

n

Figure 2.9: The general behaviour for the remaining E
j
n

n
is still not very

clear. However, if n ≥ 19 all computed expected share functions where odd
j mod 4 6= 1 are declining

None of the trends could be generally proven, since they all interdepend and
no general way of determine strategy was found. However all the trends are
verified by computer aided computation, the conjectures of section 2.2 are
true for all computed values of n, j, made up to 200 pairs.
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2.4.3 Simulated games versus other opponents

It is now established what is optimal play if two Optimal players play each
other, for boards up to 200 pairs. If this Optimal player was to face other
opponents, how valuable is the strategy?
In order to answer to this, a simulation, where the Optimal player faces dif-
ferent opponents; with simple and easy to describe strategies; was made. The
simulations were run as repeated runs of terminating memory, the outcome
of unknown cards was decided by a random number between zero and one,
given by Matlabs rand, compared to the probabilities of each outcome. The
Optimal player faced three different players, one at the time.

Opponents

First, a description of the three opponents the Optimal player faced.

Aggressive child always uses the risky strategy. In this way, the expected
number of pairs collected each turn is maximised.

Defensive professor always uses the safe strategy. In this way, the net ex-
pected number of pairs in the professors turn is maximised.

Improved professor is using the same strategy as the Defensive professor
except when there is only one unknown pair. In that case, the risky
strategy is dominating the safe strategy for all outcomes. Then the
Improved professor will use the risky strategy.
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Figure 2.10: The Optimal player does get more than half of the pairs. The
Defensive professor loses immense because of his exaggerated cautiousness.

Average outcomes

The optimal player faces each player on boards on 16 different sizes, begin-
ning with from 10 unknown pairs up to 25 unknown pairs. On each size of
the board, each player faces the optimal player 100000 times. The average
outcome is displayed in figure 2.10. Against all players, Optimal player fares
better than the opponent, and collects at least about 55% of the pairs on
average. The too cautious Defensive professor loses quite significant amount
of pairs, but the difference declines for a larger initial board. This happens
since the expected share of the pairs that is delivered from positions (n, 0)
declines with growing total number of pairs.
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2.5 Conclusion

No general way of determine Ej
n by an explicit expression was found within

the scope of this paper. It was found that the optimal strategy must depend
on position, there seems to exist some value of parity, positions with an even
number of unknown pairs are more favourable than the next odd position
with the same number of pairs. Since no way of determine or at least es-
timate Ej

n was found this could not be resolved. Instead, another game of
memory was defined in order to try to find out what can generate such a
pattern. The results of this approach are given in chapter 3.
However, clear patterns where detected, which produces two conjectures,

Conjecture 1 Except for smaller boards, n < 16, the optimal strategy
is to use the risky strategy when j is odd and safe strategy when j is even.

Conjecture 2 Except for smaller j, j < 18, E
j
n

n
is monotone in n for fixed j,

growing if j is even and declining if j is odd,

where the second conjecture probably is needed in order to prove the first.
The computed results that resultet in these conjectures are given in sec-
tion 2.2. The optimal strategy for smaller boards are given by table 2.1 on
page 17.



Chapter 3

Combinatorial memory

3.1 What is a combinatorial game?

1. There are just two players.

2. There are several, usually finitely many, positions.

3. There are clearly defined moves that specify the moves that either
player can make from a given position to its options.

4. The two players move alternately, in the game as whole.

5. Both players have complete information, that is, all circumstances are
known.

6. There are no chance moves.

7. In the normal play convention a player unable to move loses.

8. The rules are such that the play will always come to an end because
some player will be unable to move. This is called the ending condition.
No game is infinite or drawn by repetition of moves.

Terminating memory is constructed in order to fulfil as many of this rules
as possible without changing the children game of memory in any significant
manor. However, terminating memory is not a combinatorial game. Rule
number 7 can also be stated as the player that makes the last move loses.
The game is then called misère instead of normal. Even though this might

25
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seem as the exact opposite, i.e. the player that wins the normal game loses
the misère game, a game position may be a winning position with both
normal and misère rules. One common combinatorial game is the game of
nim. Since this will be important to a combinatorial variant of memory, as
described in section 3.3, the next section will briefly analyse a variant of nim,
called One-heap Nim or Subtraction game.

3.2 One-heap Nim

A throughrough analyse of this game can be found in chapters 2, 4 and 12-
17 of Winning ways [1]. In this section, the specific game of nim used in
combinatorial memory will be described.
Impartial games, i.e. games where both players are allowed the same moves,
given the same game position, can have only two outcome classes, which may
be called

P-positions, player in turn is losing, and,

N -positions, player in turn is winning.

No other value is possible for an impartial game. In one heap nim, or sub-
tractions games, the players alternatively removes a number of beans from
the heap of beans of size n. The game ends when there are no beans left to
remove. The number of beans a player may remove is given by game specific
rules. In this specific game, the allowed moves are to remove 1 or 2 beans.
The outcome of the game is given by a function G(n), given by recursion.
In normal game, the player that can reduce the number to 0 wins, since no
more beans can be removed. In misère game, that move is the losing move.

3.2.1 Normal game

The position 0 is losing, i.e. the positions from where 0 can be reached are
winning. This defines the recursion that determines which positions will be
P- and N -positions. If a P-position can be reached, the position is an N -
position, otherwise it is a P-position, since it have to reach a N -position and
thus is losing.

n = 0 1 2 3 4 5 6 . . .

G(n) = P N N P N N P . . .
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It is a classical result that any position such that n = 0 (mod k + 1) is a
losing position in normal nim if it is allowed to remove any number of beans
up to k ∈ N. The strategy for the player in winning position is of course to
force the opponent to start from losing positions. This can not be thwarted,
since the steps between losing positions is k + 1.

3.2.2 Misère game

The misère game includes the same recursion and thus game mechanics as
the normal nim, but the start of the recursion is different. The objective is
to not remove the last bean. The only position where any player is forced to
do so is when there is only one left. Thus G(1) = P. The resulting game is

n = 0 1 2 3 4 5 6 . . .

G(n) = N P N N P N N . . .

Thus there are positions where the player in turn may win both misère and
normal game.

3.2.3 Choice game, used in combinatorial memory

In the game defined in section 3.3, a sequence of subtraction games will
occur. Locally they are all misère games, but due to the value of lead1, a
player may win overall by sacrificing the present subtraction game, in order
to play in the winning parity. Thus the need to choose to lose occurs. If it
is a winning strategy to lose the present misère game, both players will try
to do so and vice versa. The choice occurs when the player in turn can win
both the misère and the normal nim. Define a new outcome class to the two
defined in section 3.2,

C-positions, player in turn may choose whether to win the misère game.

Such positions occur when n = 2 (mod 3), since those positions are winning
for both misère and normal nim, where the player is allowed to remove one
or two beans. The resulting game is

n = 0 1 2 3 4 5 6 . . .

G(n) = N P C N P C N . . .

1Defined in section 3.4.3
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This game is the one-heap game of nim that will be important in combina-
torial memory as defined in section 3.3.
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3.3 Making memory a combinatorial game

The game terminating memory, described in chapter 2, does not comply with
all the 8 rules given in section 3.1. In particular, rules 5-7 is not fulfilled.
Even thought perfect memory give the players complete information of the
past, the order of unknown cards are, as their name states, unknown. Since
the order is not known, it is also not determined, the actual order is an
outcome of chance. Finally, in the game of terminating memory, the player
that has collected most pair when the game ends is the winner.
However there is an easy change of terminating memory into what henceforth
will be called combinatorial memory. The difference is that the order in which
the "unknown cards" are to be opened is known to both Left and Right
player. Thus both complete information is introduced and chance moves
are removed. These changes also turn out to render a game which almost
complies with rule 7. The allowed moves will be the same as described in
section 2.1.3. The game will turn out to be a sequence of misère nim games.
Before that is properly verified, the new game mechanics will be displayed
by some examples.

3.3.1 Examples

Henceforth cards in a game are labelled Jx. The numbering of each pair, J , is
done from 1 to N ,N being the number of pairs in the game, and the labelling
x ∈ {a, b} of each card in the pair, where a is used before b. Thus any card
Ja is opened before Jb and before any card labelled J ′a, where J < J ′. This
is only due to labelling and does not change the game, compared to other
possible labelling.

An example

Assume the game is a game of 8 pairs where the cards are to be opened in
the order displayed by figure 3.1, Left starting the game. As in terminating
memory, initially Left has to open two new cards, 1a and 2a, since no known
cards can be chosen and every move in memory include opening of two cards.
Right has to open card 1b and collects pair 1 by then opening card 1a. Right
must continue by opening 3a. Right player may now choose whether to open
2b or 2a as his next card, but the outcome will not differ, Right turn will
end. Left will collect pair 2 but is then forced to open 4a. By the same
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argument as for pair 2, Right will collect pair 3 and will continue and collect
pair 4. Right now have to open both card 5a and 6a since no known cards
are to choose from. The need to number the pairs in order now surfaces.
Since 8 cards has been opened before 5a but there are only 8 possible cards,
consisting of pairs 1-4, the previous 8 cards all match to pairs. Thus all pairs
and all cards before 5a is already removed and can not be chosen. Actually,
if any card with label a such that 2(J − 1) = M where M is the number of
previously opened cards, there are no known cards left on the board and the
only allowed move forces the player to open 2 cards.

2a1a 4b3b4a2b3a

5a 6a 6b5b8a7a

1b

8b7b

Figure 3.1: A small example of combinatorial memory

Back to the example. Right thus has to open cards 5a and 6a. Left has
a choice whether to open 8a or not. In this case it is simple, if Left opens
8a Right will collect pairs 5-8, otherwise Right have to open 8a. Thus Left
chooses to end his turn, Right gets the lead but has to open 8a, thus losing
the lead. Left gains the lead and will collect pairs 5-8.
Where was the game of Nim?
In this example, the game of Nim occurred five times. Initially, there was a
heap of one, Left had to open both 1a and 2a and Right collected pair 1. 3a
was a heap of one, 4a was a heap of one, 5 − 6a was a heap of one; since no
other cards were left; and 7 − 8a was a heap of 2. As stated in section 3.2,
in a misère game of one heap nim of size n, where the players may chose to
remove one or two, starting player will lose if either player wants it if n = 1
(mod 3) and may choose whether to win or lose if n = 2 (mod 3). Thus
Left was able to win the last 4 pairs, since Left started the only Nim-game
where the starting player had a choice.
With one major exception it seems like the nim-games are sequences of a-
labelled cards. The length of the sequence is equivalent to the size of the
heap, n. The exception occurs when there are only non-opened, “unknown”,
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cards on the board. This is equivalent to when the first opened card’s label is
{Ja : 2(J−1) = M} where M is the number of opened cards. This exception
must be taken care of when the game of combinatorial memory is translated
into a sequence of weighted games of nim.

A similar board but a different outcome

Now assume the board given by the sequence shown in figure 3.2. The only
difference from the first example is that card 3b is moved. This gives two
important differences in the game. Most important for game understanding,
the nim game consisting of 4a is removed, since any player that opens 4a as
a first move will also be able to open 4b, collecting a pair. Any player that
opens 4a as a second card will lose pair 4, but this is equivalent of opening
4b as a second card. Thus not all sequences of Ja cards results in nim games.
The other difference is that cards 5a and 6a is not forced to be open as in
the first example, card 3a is still in play since 3b is not opened.

2a1a 4a2b3a

6b5b8a7a

4b 5a

6a 3b

1b

8b7b

Figure 3.2: Another board of combinatorial memory

Left is forced to open 1a and 2a. Right collects pair 1, and must open 3a.
Left may then collect pair 2, must open 4a but may match this with the next
card. Thus Left will continue by collecting pair 4 and open card 5a. Since
pair 3 is not collected, Left may and will choose not to open 6a, since Left
then will collect pair 3, after Right opening 6a, and open card 7a, forcing
Right to open 8a, leaving pairs 5-8 for Left to collect.
The exception to the general rule of turning a-sequences into n-sized nim
heaps in this game regards pair 4. Any pair with the two cards adjacent must
be translated into a game with choice of size 1. The choice may however be
removed by the same reason as in the first example, there are only new cards
left to open with the second card.
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Thus the game of combinatorial memory turns out to be equivalent to a
sequence of nim games. The translation is rather simple, but some exceptions
to the general translation rules arise.
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3.4 Deciding winner of a general game

3.4.1 Transforming simple games into one nim game

The example games could be divided into a sequence of alternating misère
nim games and collect sequences. Suppose that all games of combinatorial
memory can be built up by simple games, consisting of a nim game followed
by a collect sequence. With this approach, however, both the objective of
winning and losing must be analyses, since the winning player also must start
the next nim game. Unless otherwise stated in this section, both Safe and
Risky strategy is allowed, i.e. there is at least opened, uncollected card left
on the board, which is game equivalent to that both one and two may be
deducted in the nim game. In any simple game, the game starts with a one

Lead shifting game: Left loses misère nim

a a a

b b b...

p cards

...

3m + 1 cards

a First opened card of a pair

Second opened card of a pairb

Figure 3.3: A simple game of combinatorial memory where a single misère
nim game is of size n s.t. n = 1 (mod 3)

heap nim game of size n, where one or two can be deducted.
If n = 1 (mod 3), the starting Left player will lose the misère game and
win the normal game if either player wants it. Either Left or Right will make
Left lose the nim game, since it must be either good or bad to win the misère
nim game. Thus, Left will always open the last card that can not be matched
and Right collect the p pairs. Right will have the lead in the next game.
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Lead preserving game: Left wins misère nim

a a a

b b b...

p cards

...

3m cards

a First opened card of a pair

Second opened card of a pairb

Figure 3.4: If n = 0 (mod 3), the starting Left player will win the misère
game and lose the normal game. Thus, Right will open the last card that
can not be matched and Left collect the pairs.

Choice of lead game: Left optionally wins misère nim

a a a

b b b...

p cards

...

3m + 2 cards

a First opened card of a pair

Second opened card of a pairb

Figure 3.5: If n = 2 (mod 3), the starting Left player will be able to win
both the misère game and the normal game and can thus choose whether to
collect the pairs and start the next nim game or not.
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Entire game, example of no choice case

a a a

b b b

...

m cards

...

m cards

a First opened card of a pair

Second opened card of a pairb

Figure 3.6: If there are no known cards on the board, the Safe strategy, i.e.
open only one new card, is not allowed. This happens if and only if the first
opened card is labelled Ja where {J : 2(J − 1) = M}, M being the number
of previously opened cards. This is equivalent with #a-cards = #b-cards.
Then the two cards which Left player must open may be translated as a
separate nim game, with n = 1, with no pairs to collect, i.e. a zero worth
type of simple game of lead shifting nim. This is true since Left must open
the two initial cards and end his turn, unless the case of an adjacent pair is
valid.

Adjacent pair case

a

b b

a

...

p cards

...

m cards

Ja

Jb

a First opened card of a pair

Second opened card of a pairb

Figure 3.7: If any card Ja is followed by card Jb, the Ja is not counted as a
part of the nim game, since the player that opens Ja with his first card, may
collect pair J . Translate any such pair into a one pair worth choice of lead
game. However, this case can be combined with the no choice case. The two
cards are then translated into a lead preserving game of size one.
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3.4.2 Transforming any game into a sequence of nim

games

If any board can be translated to several simple games, the general game of
combinatorial memory could be solved as a sequence of misère nim games.
This might be good since nim games are easier and more known than com-
binatorial memory.

Theorem 1. Any game of combinatorial memory can be decided as a se-
quence of nim games

Proof. If dividing the board into simple games of the three types is possible
for any board of combinatorial memory, assuming that the two exceptions are
translated into stated variants of simple games, the theorem is true. Assume
there is a sequence of some board that can not be described. No cards in this
sequence labelled a can be before any card labelled b, in that case there would
be a nim game followed by a collect sequence, describe by one of the simple
games. But in any legal sequence of combinatorial memory, there must be a
card labelled a first. Either it is the first subsequence in the game, and the
first card in the game is labelled 1a, or it must be separated from a previous
collect sequence. Likewise, the last card in the sequence must be labelled b.
Either it is the last card in the whole game, that must be the second half
of a pair, or a b labelled card must separate this sequence from the initial
a labelled card of the next sequence. Thus any part of a board that can
not be translated into a series of weighted nim games is not consistent with
combinatorial memory.

3.4.3 Adding of memory nim games

Notation

Lead: The player that starts the nim game is said to have the lead because
that player collected the pairs of the previous nim game.

Lead shifting game: does shift lead, Right player (of the misère nim) will
collect the following p pairs. This will be noted ↓ p.

Lead preserving game: does not shift lead, Left player (of the misère nim)
will collect the following p pairs. This will be noted ↑ p.
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Choice of lead game: does shift priority iff Left player (of the misère nim)
gains from it, Left decides which player will collect the following p pairs.
This will be noted l p.

Also notice that since a net game result is computed as the number of pairs
Left will collect deducted the number of pairs Right will collect, the number
of pairs p may be negative, i.e. starting player collects fewer pairs than the
second player.

Lemma 1. Adding a lead preserving nim game yields

↑ p0 ↑ p1 = ↑ (p0 + p1)
↓ p0 ↑ p1 = ↓ (p0 + p1)
l p0 ↑ p1 = l (p0 + p1)

Proof. The player that gets the p0 pairs will automatically also get the p1

pairs, since either Left or Right will enforce it, depending on the sign of p1

and the value of the lead.

Lemma 2. Adding a lead shifting nim game yields

↑ p0 ↓ p1 = ↑ (p0 − p1)
↓ p0 ↓ p1 = ↓ (p0 − p1)
l p0 ↓ p1 = l (p0 − p1)

Proof. The player that gets the p0 pairs will automatically also lose the p1

pairs, since either Left or Right will enforce it, depending on the sign of p1

and the value of the lead.

Since adding of a lead shifting nim game deducts the net number of pairs
the player in the lead will get, negative pi may occur.

Theorem 2. Any sequence of memory nim games with one initial choice of
lead game and no other games with choice of lead, is game equivalent of a
single nim game l q.

Proof. This is almost a corollary of Lemma 1 and Lemma 2, since any addi-
tion of two non-optional games returns a non-optional nim game. Thus, any
sequence of nim games without choice can be summed together to a single
nim game without choice. The initial choice of lead game can then be added
with the acquired game.
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Lemma 3. Adding a game with choice of lead from the end (where lead is
unimportant) yields

↑ p0 l p1 = p0 + |p1|
↓ p0 l p1 = −(p0 + |p1|)
l p0 l p1 = |p0 + |p1||

Proof. The player that gets the p0 pairs may choose whether to give or take
the p1 pairs, depending on the sign of p1. However, since it includes a choice,
which player will get the lead is not clear. Thus it is necessary to add the
games together from the end of the game, where the lead is without value,
there is no more pairs to collect.

Theorem 3. Any sequence of choice of lead nim games can be solved by
recursion.

Proof. Since any two l p-games can be added when the lead does not matter,
this follows from Lemma 3. In order to use the same notation, some of the
addition of Lemma 3 has to be reverted, the choice of sign in the outermost
absolute sign can be noted with a l without losing consistancy. The owner-
ship of the lead is unknown but also irrelevant.
Recursive step, no games will be added from the right.

l pm−2 l pm−1 l pm = l pm−2 l (pm−1 + |pm|)

Corollary. Since any game of combinatorial memory is game equivalent of
a sequence of choice of lead nim games, it can be resolved by recursion as
stated in Theorem 3.

This follows when combining all three theorems. For any board of combi-
natorial memory, the winner can be decided by translating the game in to
a sequence. The sequence can be simplified by the adding rules stated in
Lemmas 1-3, but since adding of optional shifting game includes an absolute
value function and does not include information of the ownership of the lead,
this will be nested if there are more than one optional shifting game.
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3.5 Translating the examples

Return to the example given in section 3.3.1. It can be translated into the
following sequence,

↓ 0 ↑ 1 ↓ 1 ↓ 2 ↓ 0 l 4

Before any simplification is done, p sums to 8, the number of pairs. By the
addition rules, this simplifies to

↓ 1 ↓ 1 ↓ 2 ↓ l 4
↓ 1 ↓ 1 ↓ 2 ↓ 4
↓ 1 ↓ 1 ↓ −2
↓ 1 ↓ 3
↓ −2
2

Which means Left wins by two pairs, since Left starts. The result is then
5 − 3, which confirms the result given the first time this example was used.
In the same way the example given in section 3.3.1 can be translated to

↓ 0 ↑ 1 ↓ 1 l 1 l 1 l 4

which in turn can be simplified to

↓ 1 ↓ 1 l 1 l 1 l 4
↓ 1 ↓ 1 l 1 l 5
↓ 1 ↓ 1 l 6
↓ 0 l 6
6

In this case Left wins by 6 or 7 − 1, one can recollect that Right managed
to collect only pair 1. This, however, could be somewhat easier solved if the
theorems of section 3.3.1 are used.

↓ 0 ↑ 1 ↓ 1 l 1 l 1 l 4

is immediately transformed into

0 l 1 l 1 l 4

from where the recursion gives the same as above

|1 + |1 + |4||| = 6
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If the games are larger, this is more useful. Assume the board to be game
equivalent to

l 5 ↓ 3 ↑ 1 l 3 ↑ 4 l 1 ↑ 3 ↑ 4

By using Lemmas 1 and 2, this is equivalent to

l (5 − (3 + 1)) l (3 + 4) l (1 + 3 + 4)

which, when recursively computed gives

|1 + |7 + |8||| = 16

As can be seen, the recursion can be exchanged with a nested absolute func-
tion, perhaps simpler than pure recursion when using computer aided com-
putations.

3.6 Further studies

In order to make these results useful to determine strategy of terminating
memory, statistics of possible remaining boards must be determined in an
easy way. Since a-labelled cards can be placed anywhere on the board, but
b-labelled cards must be later than the matching a-card, the size p of the
collect sequences are more likely to be larger in the end game. It is also most
likely that the most probable nim game size is 1, i.e. the players can expect to
get every other collect sequence. However if the number of expected collect
sequences is even, the player would try to give the next sequence away in
order to be able to claim the last, most likely biggest, collect sequence. If the
number is odd, the player will try to get the next collect sequence in order
to get one more collect sequence, including the last.
To make this hypothesis consistent with the results of chapter 2, one has to
confirm that when the number of unrevealed pairs j is odd, it is more likely
to be an even number of collect sequences left. Corresponding, it must be
more likely to be an odd number of collect sequences left when j is even.
The risky strategy would give away the collect sequence if the size of the
current nim game is 2, which is less likely than a size of 1 but more likely
than a size of 3. Since strategy does not matter when the size is 1, a nim
game of 2 must be expected when choosing strategy. Corresponding, the safe
strategy increases the possibility for the player in turn to get the next collect
sequence.
This is only a hypothesis that might be confirmed by further studies.



Appendix A

Expected value function E
j
n

In the appendix, the computed function Ej
n is given for all n, j < 23. They

are stated as 23 functions in n, one for each fixed, given j.

E0

n = n

E1

n =
n + 2

3

E2

n =
11n − 12

15

E3

n =
13n2 + 119 − 180

35(n + 3)

E4

n =
211n2 + 72n + 1232

315(n + 4)

From j = 5, the general pattern of strategy choice is broken. Each element
can be computed seperatly, but to solve the general recursion the strategy
has to be the same for all n.
However, the pattern is reestablished for n ≥ 16. Thus, henceforth the
expected value functions are valid only for n ≥ 15, where the value for
n = 15 is used as initial value. For E5

n and E6
n, the expected value function

can be generally computed from n = 9 instead, since the pattern has not get
broken for these j.
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Unless otherwise stated, the expected value functions are valid only for n ≥ 15.

E
5

n
=

1

3454(n + 5)(n2 − 16)(n2 − 9)(n2 − 4)(n2 − 1)
×

1355n
11

+ 22517n
10

− 208780n
9

+ 274890n
8

+ 1612215n
7

− 7158459n
6

+ 6211810n
5

+ 28105660n
4

− 47631320n
3

−21244608n
2

+ 40014720n + 1207722700800 n ≥ 9

E
6

n
=

1

45045((n + 6)(n2 − 25)(n2 − 16)(n2 − 9)(n2 − 4)(n2 − 1)n)
×

28785n
13

− 40066n
12

+ 640809n
11

− 12622610n
10

− 18740865n
9

+ 403799682n
8

− 168861693n
7

− 3741258950n
6

+ 3842132580n
5

+ 11313085784n
4

−

−14329401216n
3

− 94210333626240n
2

+ 847832010163200n − 999698373273600 n ≥ 9

E
7

n
=

1

45045(n + 7)(n2 − 36)(n2 − 25)(n2 − 16)(n2 − 9)(n2 − 4)(n2 − 1)n
×

18179n
15

+ 456901n
14

− 9671221n
13

+ 73737209n
12

− 322893571n
11

− 403780377n
10

+ 13170694537n
9

− 39346766173n
8

− 85591846340n
7

+

+500442798856n
6

− 159474385616n
5

+ 328040918687664n
4

− 8570817229963968n
3

+ 72611046391461120n
2

− 215092266770304000n + 13609153099071129600

E
8

n
=

1

11486475(n + 8)(n2 − 49)(n2 − 36)(n2 − 25)(n2 − 16)(n2 − 9)(n2 − 4)(n2 − 1)n
×

7123515n
17

− 29253600n
16

+ 1121029436n
15

− 29510640000n
14

+ 122122097090n
13

+ 1146119083200n
12

− 8658956028268n
11

−

−2157444432000n
10

+ 150474833240875n
9

− 310556354565600n
8

− 725126934312872n
7

− 220762956566880000n
6

+ 8204274258706790320n
5

−

−113644465165672128000n
4

+ 728041184240995816704n
3

− 29493665704563148800000n
2

+ 358333636389876958003200n + 157474496656739598336000

E
9

n
=

1

72747675(n + 9)(n2 − 64)(n2 − 49)(n2 − 36)(n2 − 25)(n2 − 16)(n2 − 9)(n2 − 4)(n2 − 1)n
×

30006585n
19

+ 1036841875n
18

− 39238112922n
17

+ 668210240988n
16

− 8441611673826n
15

+ 53357036901330n
14

+ 100382189973576n
13

−

−3236618760775244n
12

+ 12525972644244033n
11

+ 28307835115360515n
10

− 304205343026273286n
9

+ 3630213923571979224n
8

−

−199280597740024684128n
7

+ 5124649653990178853680n
6

− 68552499294181790489568n
5

+ 1295034025299609083980032n
4

−

−28684155316584233367857664n
3

+ 257051338936649204581785600n
2

− 330940715625746702390476800n − 2201148062383258856964096000

E
10

n
=

1

43648605(n + 10)(n2 − 81)(n2 − 64)(n2 − 49)(n2 − 36)(n2 − 25)(n2 − 16)(n2 − 9)(n2 − 4)(n2 − 1)n

26501985n
21

− 203623026n
20

+ 13034913771n
19

− 528451426582n
18

+ 6391487629098n
17

− 13173868153668n
16

− 332091428099706n
15

+3083965598740596n
14

− 6073575327255579n
13

− 76008187869433690n
12

+ 545890469445740367n
11

− 4091982911069169246n
10

+ 278254590954459112224n
9

−9037373963522997668112n
8

+ 156919129912520606967600n
7

− 3184376290476848339462368n
6

+ 86029432996548060137619072n
5

−1313125210862475835623381504n
4

+ 7647487749569929420200019968n
3

+ 9658785159141709071159705600n
2

− 237115198587432556686429388800n

+610419525456086261979807744000
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E
11

n
=

1

35137127025(n + 11)(n2 − 100)(n2 − 81)(n2 − 64)(n2 − 49)(n2 − 36)(n2 − 25)(n2 − 16)(n2 − 9)(n2 − 4)(n2 − 1)n
×

14730598575n
23

+ 659637222405n
22

− 39161256924075n
21

+ 1160590782054011n
20

− 26812896242751850n
19

+ 378492647435609630n
18

−2309093970255831990n
17

− 8339044733379779034n
16

+ 227250401966888216235n
15

− 1223642623052058273295n
14

− 1632040159188098345455n
13

+53026478042819655976511n
12

− 790471125202981847412480n
11

+ 29500872418858199679515580n
10

− 805274023543443003827740320n
9

+17249987481159244162110603536n
8

− 427412152811575702015317022720n
7

+ 9595469883147853800892136943680n
6

− 132376912961774532965825060540160n
5

+863829057066740976487619677694976n
4

+ 72673963511954793009295861002240n
3

− 34974009638426961315345065084928000n
2

+188307942156761715586869163794432000n − 337665229522362661804740397301760000

E
12

n
=

1

35137127025(n + 12)(n2 − 121)(n2 − 100)(n2 − 81)(n2 − 64)(n2 − 49)(n2 − 36)(n2 − 25)(n2 − 16)(n2 − 9)(n2 − 4)(n2 − 1)n
×

20995752393n
25

− 252722296680n
24

+ 23977745723430n
23

− 1415269186258032n
22

+ 31981440446585047n
21

− 354278944946434200n
20

+1216153342920445160n
19

+ 24386270068074750528n
18

− 398997643370792126793n
17

+ 1688168795113163036520n
16

+ 13116424253053533069790n
15

−167521280587897574636592n
14

+ 1434411445793289327582617n
13

− 61612445696276780946672360n
12

+ 2039607468392158476472410420n
11

−49945386029922312877453901472n
10

+ 1355009824352680665761046578992n
9

− 35953676244797355350995701344640n
8

+ 654033498243091716930476625560000n
7

−6624496970848860540456096080543232n
6

+ 20269877847795994690568373630879744n
5

+ 304693904420829370779162604093071360n
4

−4080408171629814956368568781681868800n
3

+ 22251618529360531526985672892140748800n
2

− 62534485757543742842514559385075712000n

+79314475585750982172580876139888640000

E
13

n
=

1

175685635125(n + 13)(n + 12)(n2 − 121)(n2 − 100)(n2 − 81)(n2 − 64)(n2 − 49)(n2 − 36)(n2 − 25)(n2 − 16)(n2 − 9)(n2 − 4)(n2 − 1)n
×

74594975455n
26

+ 5053069157325n
25

− 296053780804308n
24

+ 12674401215167894n
23

− 433416896087588147n
22

+ 8686494141819477731n
21

−89697058796791682698n
20

+ 160372144362332705264n
19

+ 7879896013707917968593n
18

− 96876627498917524651789n
17

+ 271988847408244604090992n
16

+3758782918344388721130494n
15

− 46678104062391243723489397n
14

+ 883707183681529905155409581n
13

− 33096135776509781581588962258n
12

+962344788435534516276407391644n
11

− 26420597049992306198365127933672n
10

+ 751668321599361406312011736056656n
9

−17051852317574628994609864445340128n
8

+ 247308181990428290806687900698576704n
7

− 1801095998265271216696614895442696832n
6

−2397941914258247568460042153305429504n
5

+ 177944554894330790321019910459717478400n
4

− 1691739675329446048724636848669043712000n
3

+8204402817361110078076149393459830784000n
2

− 22056233324658138843217068069160058880000n + 27959306145949011831635526481693900800000
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E
14

n
=

1

32752821976875(n + 14)(n + 13)(n + 12)(n + 11)(n2 − 100)(n2 − 81)(n2 − 64)(n2 − 49)(n2 − 36)(n2 − 25)(n2 − 16)(n2 − 9)(n2 − 4)(n2 − 1)n
×

19325726394975n
26

+ 365202175373550n
25

+ 48174021307779130n
24

− 1919776742572753620n
23

+ 36776600478626000041n
22

−456419771843533498374n
21

− 359182920059384331680n
20

+ 92618145628011604122720n
19

− 825648302319218169518639n
18

−

2913448739290151872861854n
17

+ 76644901247899261871373010n
16

− 243334611861002425919747940n
15

+ 904990473732399664098165271n
14

−197029380678124703614992615594n
13

+ 7736225430703531321911086960500n
12

− 208996551756126684509277938221800n
11

+6493620902119302883206765463540336n
10

− 208085643997900624797557079755697504n
9

+ 4528649788810732796144534143166895040n
8

−52115027459553642727898214164082111360n
7

+ 97553649382811434227910360098950678016n
6

+ 5450931036467922658675044612333674059776n
5

−78241567629949428020910496848383026176000n
4

+ 536935757738168511376812199444898598912000n
3

− 2205582280577783606416411044924218818560000n
2

+5812654834598461694331791156630476554240000n − 8335208216480595004315984091172175872000000

E
15

n
=

1

1421472473796375(n + 15)(n + 14)(n + 13)(n + 12)(n + 11)(n2 − 100)(n2 − 81)(n2 − 64)(n2 − 49)(n2 − 36)(n2 − 25)(n2 − 16)(n2 − 9)(n2 − 4)(n2 − 1)n
×

609791965207425n
27

+ 71576234194899105n
26

− 1803931020327014040n
25

+ 158653941617552548470n
24

− 5905014925340786939941n
23

+108261160100620722844111n
22

− 937153463358280963906298n
21

− 5611431318597284317531240n
20

+ 229750676320754615851497519n
19

−1647469888131565552174434369n
18

− 8742580552761435124787797348n
17

+ 178337063668877787882778051150n
16

− 714172914419029956477868083011n
15

+16600455482615407024271345146241n
14

− 1016526637457293494817146523927818n
13

+ 33924263656096553036649093949881540n
12

−1026359527632939829153129662650705896n
11

+ 33939740335769714586517760969276588656n
10

− 927967837957347600068916006649994920928n
9

+16098584430281751887286369716423155110080n
8

− 131903476638937409286688149048582982356096n
7

− 532685718715874802469998579058661430303744n
6

+25390968275029176264542721149497439501586432n
5

− 288572314490237575020518316785827135503360000n
4

+1816137480108171395185012082350112062740480000n
3

− 7277332450642723357994890939579891775447040000n
2

+

19381015612042374208979652172269545547694080000n − 27947985685504325917744965102333847535616000000

E
16

n
=

4264417421389125(n + 16)(n + 15)(n + 14)(n + 13)(n + 12)(n + 11)(n + 10)(n2 − 81)(n2 − 64)(n2 − 49)(n2 − 36)(n2 − 25)(n2 − 16)(n2 − 9)(n2 − 4)(n2 − 1)n

×

2490477158967525n
27

+ 129927181965584535n
26

+ 13764218310725762250n
25

− 233168468091262922454n
24

+ 8931997190114762206899n
23

−115579102913906447354439n
22

− 1343854609376705268676900n
21

+ 35492497181097944956068408n
20

− 128342353087523081610943301n
19

−3144468927752979984522647799n
18

+ 34393730315170954713744766410n
17

+ 71694949763047219651349630898n
16

− 1415740242834841505603826410611n
15

−84447982026659956138734162668169n
14

+ 3829520003951462443811712757943920n
13

− 112092710235995069094748899912704052n
12

+3717304294950287056407918134708303424n
11

− 139673363995535815609872856595797311984n
10

+ 3737708659832502594537222288980639809280n
9

−53088885249555409615366313052773806421952n
8

+ 122576203482106814014318416194858849868544n
7

+ 8352270857252119890856434499405677547846656n
6

−146892677826884061731496637207371686056488960n
5

+ 1245473258398716545051069201109762449172529152n
4

−6613557541410871863105496683033306668150292480n
3

+ 26320218558183863808936417601478061809939251200n
2

−82043284649559650769684180717178952525807616000n + 136827505874914083603846736312762134712811520000
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Since the coefficients are growing to ridiculous size, no further computations
are appended. No apparent change in the computed results appears for
larger j, the concluded conjectures are true and the expressions are big and
cumbersome.



46 APPENDIX A. EXPECTED VALUE FUNCTION EJ
N
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