
Tight Span used in Phylogenetics

Pio Korinth

April 10, 2007

0

1

2

3

4

5

6
7

8

9 10

11

12

13

14

Abstract

Suppose we have a set of species and that we know the genetic difference
between any pair in that set. We want to figure out which species have
the same ancestor/ancestors. One way of finding approximative solutions
is using a mathematical tool known as Tight Span. I will describe what
Tight Span is and also implement my own algorithm using Tight Span
on computers. I will also describe a way to show how a conjecture given
by Andreas W.M. Dress in [1] on pages 342-345 can be deduced from a
different conjecture I have formulated as well as describing another method
I have developed for construction of phylogenetic trees. This last method
does not use Tight Span and has not yet been implemented.

ii

Acknowledgments

I want especially to thank my brother Leo Korinth for helping me with the
computer related parts of this project such as installing Polymake, programming
in C++, which I was not used to when I began, and discussing how the algorithm
should work. He came up with the idea of connecting just the nodes that are in
a cycle.

My advisor professor Svante Linusson has helped me understanding Tight Span
geometrically, giving me a basic idea how the algorithm could be made and has
also had a big patience with me. He has also given me a lot of help and advices
how the report should look like.

Alice Lesser, who I have e-mailed, has made a PhD thesis on a similar subject
and has helped me a lot when I have asked questions.

Ewgenij Gawrilow who has constructed Polymake has helped me with the in-
stallation of Polymake and has also helped me along with Sven Herrmann when
I got strange output from my algorithm. Thanks!!!

My mother Ann-Sofie Korinth has been a big support.

The discussions have been fun with Leo and Svante and I hope and think I have
learned a lot through them.

iii

Contents

1 Introduction 1

2 Realizations 1

3 The Tight Span 2

4 Why Tight Spans are interesting 9

5 Algorithm using Tight Span 10

5.1 Create random tree . 11

5.2 Modify tree . 11

5.3 Treeify . 11

6 Testing ts2tree 14

7 Another approach 17

7.1 Notation and definitions . 17

7.2 Step 1 . 18

7.3 Step 2 . 18

7.4 Step 3 . 18

A Definitions 19

iv

1 Introduction

I have listed some basic definitions back in the appendix so you do not have
to be a mathematician to be able to follow the lemmas and theorems. The
more important definitions are in the text, hopefully making the reading easier.
Throughout the text the metrics involved will be finite. If you are a biologist you
can think each point of the metric represents one of the species and the distance
between any two species represents the genetic difference between them.

In Section 2 you can read about realizations, which is a concept that relates
metrics with graphs. This section will be important later on.

The main results in Section 3 are the theorems and its corollaries, which are
also stated in [1]. Lemma 4, 1, 16 and 17 are also of great interest. Theorem
1 and 3 show that an extension Y of a metric space X is tight if and only if
y1y2=supx1,x2∈X (x1x2 − x1y1 − x2y2) for all y1, y2 ∈ Y . Theorem 1 shows the
“if” case and Theorem 3 shows the “only if” case. Theorem 2 shows that there
always exists an isometric embedding of Y into TX , where Y is a tight extension
of the metric space X and TX is the Tight Span of X. We have the following
relationships:

TX
τ **

TYψ2
jj

X
?�

x 7→hx

OO

� � // Y
?�

y 7→hy

OO

ψCCCC

aaCCC

I will show how a conjecture by Andreas W.M.Dress given in [1] on pages 342-345
can be deduced from a different conjecture we formulate in Section 4. My hope
is that this will give you a greater understanding of the relationship between
Tight Spans and optimal realizations.

In Section 5 I describe among others an algorithm which uses Tight Span in the
construction of “best fitting” trees from arbitrary finite metrics. The algorithm
has been implemented in C++ with the help of Polymake [4]. I have done this
with my brother Leo Korinth. You will also see some pictures how the algorithm
works. Pseudo code has also been included for better understanding.

The following Section 6 tests the algorithm on perturbed randomized trees.

The last section describes a method for making “best fitting” trees out of met-
rics. This method does not use Tight Span and has not yet been implemented
although I have implemented a simplified version of this method in Matlab.

2 Realizations

A realization of a metric space X is a connected positive weighted graph G s.t.
for any two points x, y in X the distance d(x, y) corresponds to the shortest
path between the vertices x, y in G. From now on we will denote the distance
d(x, y) by xy to save space. The vertices of G consist of X ∪ Y , where Y is

1

a set of auxiliary vertices with degree ≥ three since vertices of degree two can
be contracted. That is, we can replace the two edges connected to the vertex
of degree two with a single edge with weight equal the sum of the two original
edges.

An optimal realization is a realization which minimizes the sum of all edge
weights in G. We denote the optimal realization of X by T , where T = (V,E, l),
V is the vertex set, E is the edge set and l is the length function defined on E.
The Tight Span of X is strongly connected with the optimal realization of X.
This is the reason why Tight Span is interesting to me.

3 The Tight Span

In this chapter I will describe the basics of the Tight Span. I have done this
mainly by following the works of Dress[1], filling in details in some of his proofs.
I hope this will make the basics of Tight Span more accessible.

Suppose we have a finite metric space X with distance function d. Then we can
define a function space PX as:

PX := {f ∈ RX | f(x) + f(y) ≥ xy for all x, y ∈ X},

where RX denotes all functions from X into the real line R. Recall xy := d(x, y).
PX is a convex space, since if f ∈ RX and g ∈ RX then clearly h = αf + (1 −
α)g ∈ RX for any scalar α, 0 ≤ α ≤ 1. The Tight Span TX is defined as:

TX := {f ∈ RX | f(x) = supy∈X(xy − f(y)) for all x ∈ X}

The definition of TX can be a bit difficult to grasp. We can think of TX as the
smallest functions in PX . This will also be proved in Lemma 8.

The distance D between any two functions f, g ∈ PX is defined as D(f, g) :=‖
f − g ‖∞:= supx∈X(|f(x)− g(x)|).

Lemma 1. TX is a subset of PX .

Proof. Suppose f ∈ TX ⇒ f(x) = supy∈X(xy − f(y)), ∀ x ∈ X ⇒ f(x) ≥
xy − f(y), ∀ x, y ∈ X ⇒ f(x) + f(y) ≥ xy, ∀ x, y ∈ X ⇒ f ∈ PX .

Lemma 2. The functions hx, defined for each x ∈ X as hx : X → R : z 7→ xz
for all z ∈ X, are members of TX .

Proof. We have that hx is in PX since hx(y)+hx(z) = xy+xz ≥ yz ∀y, z ∈ X,
i.e. hx(y) ≥ supz∈X(yz − hx(z)). Especially hx ∈ TX since for all y ∈ X,
hx(y) ≥ supz∈X(yz − hx(z)) ≥ yx− hx(x) = xy − xx = xy = hx(y)⇒ hx(y) =
supz∈X(yz − hx(z)) ∀y ∈ X.

Lemma 3. If f ∈ TX then D(hx, f) = f(x).

2

Proof. We have two inequalities:

i) f(z) = supy∈X(zy − f(y)) ≤ supy∈X(zx+ xy − f(y)) = zx+ supy∈X(xy −
f(y)) = hx(z) + f(x), i.e. f(z)− hx(z) ≤ f(x)

ii) hx(z) = xz ≤ f(x) + f(z)⇒ hx(z)− f(z) ≤ f(x)

i) and ii) ⇒ |hx(z)− f(z)| ≤ f(x) ∀z ∈ X; but for z = x we get equality since
|hx(x)− f(x)| = |xx− f(x)| = | − f(x)| = f(x)⇒ D(hx, f) = supz∈X(|hx(z)−
f(z)|) = f(x).

Definition of extension 1. A space (Y, dY) is said to be an extension of
a space (X, dX) if X ⊆ Y , dY and dX are distance functions satisfying the
rules (except possibly (M2)) of a metric and also satisfying dY |X = dX , i.e.
dY (x1, x2) = dX(x1, x2) for all x1, x2 ∈ X.

Lemma 4. (TX , D) is an extension of (X, d) with respect to the isometric em-
bedding X 3 x 7→ hx ∈ TX . Let SX = {hx | x ∈ X}. Then d(x, y) in X equals
D(hx, hy) in SX ∀x, y ∈ X where SX ⊆ TX .

Proof. It follows from Lemma 2 and Lemma 3 that hx : X → R : z 7→ xz is an
isometry since D(hx, hy) = hy(x) = yx = xy = d(x, y) ∀x, y ∈ X.

Definition of tight extension 2. A space (Y, dY) is said to be a tight ex-
tension of a space (X, dX) if:

I/ (Y, dY) is an extension of (X, dX)

II/ There does not exist a distance function (satisfying the rules of a metric
except possibly (M2)) d on Y such that (Y, d) is an extension of (X, dX)
for which d(y1, y2) ≤ dY (y1, y2) for all y1, y2 ∈ Y and for which there exist
points y1, y2 ∈ Y such that d(y1, y2) < dY (y1, y2).

Loosely speaking, if Y is a space with the smallest possible distance function dY
on it such that dY |X = dX then Y is tight. According to this definition there
may exist different tight extensions Y1 and Y2 of X such that |Y1| = |Y2|.
The following theorem is interesting mainly because of its corollary.

Theorem 1. An extension Y of a metric space X is tight if y1y2=supx1,x2∈X
(x1x2 − x1y1 − x2y2) for all y1, y2 ∈ Y .

Proof. Suppose our extension Y of X is defined as: y1y2 = supx1,x2∈X(x1x2 −
x1y1−x2y2) for all y1, y2 ∈ Y . Let d be any function satisfying (M1), (M3) and
(M4) and which in addition satisfies d(x1, x2) = x1x2 for all x1, x2 ∈ X as well as
d(y1, y2) ≤ y1y2 for all y1, y2 ∈ Y . This extension Y is tight, since for all y1, y2 ∈
Y we have y1y2 = supx1,x2∈X(x1x2 − x1y1 − x2y2) ≤ supx1,x2∈X(d(x1, x2) −
d(x1, y1)−d(x2, y2)) ≤ d(y1, y2), since suppose supx1,x2∈X(d(x1, x2)−d(x1, y1)−
d(x2, y2)) > d(y1, y2). This implies: d(y1, y2) < d(x1, x2)− d(x1, y1)− d(x2, y2)
for some x1, x2 ∈ X ⇒ d(y1, y2) + d(x1, y1) + d(x2, y2) < d(x1, x2) for some

3

x1, x2 ∈ X. The triangle inequality (M4) gives us: d(y1, y2) + d(x1, y1) +
d(x2, y2) ≥ d(y2, x1) + d(x2, y2) ≥ d(x1, x2). Thus we get a contradiction which
proves the theorem.

Lemma 5. For all functions f, g ∈ TX , we have supx∈X(|f(x) − g(x)|) =
supx∈X(f(x)− g(x)).

Proof. supx∈X(f(x)−g(x)) = supx∈X(supy∈X(xy−f(y)−g(x))) = supx∈X(xy1−
f(y1)− g(x)) = supx∈X(xy1 − g(x))− f(y1) = g(y1)− f(y1)⇒

i) supx∈X(f(x)− g(x)) = g(y1)− f(y1) ≤ supx∈X(g(x)− f(x))

ii) supx∈X(g(x)− f(x)) = f(y2)− g(y2) ≤ supx∈X(f(x)− g(x))

i) together with ii) ⇒ supx∈X(f(x) − g(x)) = supx∈X(g(x) − f(x)) ∀f, g ∈
TX .

Corollary 1. We have the following corollary of Theorem 1: TX is a tight
extension of X.

Proof. From Lemma 4 we see that Tx is an extension of X. First we show that
D(f, g) = supx,y∈X(xy − f(y) − g(x)) ∀f, g ∈ TX . From Lemma 5: D(f, g) =
supx∈X(f(x) − g(x)) = supx∈X(g(x) − f(x)) ⇒ supx∈X(supy∈X(xy − f(y) −
g(x))) = supx∈X(supy∈X(xy − g(y) − f(x))) = supx∈X(supy∈X(yx − f(x) −
g(y))). The previous equation implies: D(f, g) = supx,y∈X(xy− f(x)− g(y)) =
supx,y∈X(D(hx, hy) − D(hx, f) − D(hy, g)). The proof follows from Theorem
1.

Let us introduce the map px : PX → PX defined as:

px(f) :=
{
f(z) if z 6= x
supy∈X(0, zy − f(y)) := max(0, supy∈X(zy − f(y))) if z = x

The zero in the definition of px has to be there to make the proof of case iv) in
Lemma 6 possible.

Lemma 6. If f ∈ PX then px(f) ∈ PX .

Proof. We have four possibilities: i) y, z ∈ X, y 6= x, z 6= x ii) y, z ∈ X, y =
x, z 6= x iii) y, z ∈ X, y 6= x, z = x iv) y, z ∈ X, y = z = x. Due to symmetry ii)
and iii) are equivalent.

i) px(f)(y) + px(f)(z) = f(y) + f(z) ≥ yz

ii) px(f)(x) + px(f)(z) = supy∈X(0, xy − f(y)) + f(z) ≥ xz, since assume the
opposite⇒ supy∈X(0, xy−f(y))+f(z) < xz ⇒ supy∈X(0, xy−f(y)) < xz−
f(z)⇒ the assumption is wrong ⇒ px(f)(x) + px(f)(z) = supy∈X(0, xy −
f(y)) + f(z) ≥ xz

iii) Due to symmetry the proof of iii) is equivalent of that of ii)

4

iv) px(f)(x) + px(f)(x) = 2supy∈X(0, xy − f(y)) ≥ 0 = xx

Lemma 7. For all f ∈ PX , px(f) ≤ f .

Proof. We have px(f)(z) = f(z) ∀z ∈ X \ {x} according to the definition of px.
Assume px(f)(x) > f(x), which means supy∈X(0, xy − f(y)) > f(x). We have
0 ≤ f(x) ⇒ supy∈X(xy − f(y)) > f(x) ⇒ xysup > f(x) + f(ysup) ⇒ f /∈ PX
which is a contradiction ⇒ px(f)(x) ≤ f(x).

Let us introduce a poset structure on PX by pointwise comparisons (see Defini-
tion 3). Let us also label each point inX with an index, i.e. X = {x1, x2, ..., xn}.
We have the functions gk : PX → PX defined for any g ∈ PX as: gk :=
pxk
◦ pxk−1

◦ ... ◦ px1 ◦ g, 1 ≤ k ≤ n.

Lemma 8. TX contains all minimal functions in PX ; and every function in TX
is minimal in PX .

Proof. First we show that TX contains all minimal functions in PX , i.e. for
every function g ∈ PX we have a function f ∈ TX s.t. f ≤ g. Since gk ∈ PX ,
we get for all 1 ≤ k ≤ n, gk(xk) + gk(xk) ≥ xkxk = 0, i.e. gk(xk) ≥ 0. Then we
have gn(xk) = gk(xk) = supy∈X(0, xky − gk−1(y)) = supy∈X(xky − gk−1(y)) ≤
supy∈X(xky−gn(y)) for all 1 ≤ k ≤ n. We cannot have gn(xk) < supy∈X(xky−
gn(y)) since gn ∈ PX . Hence we can conclude: gn(x) = supy∈X(xy − gn(y)).
Now we can define our function f ∈ TX as f := gn. Clearly the inequality f ≤ g
is satisfied.

We now show that every function in TX is minimal in PX . Assume there exists a
function f ∈ TX , which is not minimal in PX . This implies there exists a g ∈ PX
s.t. g ≤ f . We get f(x) = supy∈X(xy− f(y)) ≤ supy∈X(xy− g(y)) ≤ g(x). We
get a contradiction, i.e. every function in TX is minimal in PX .

Lemma 9. For all f ∈ TX , px(f) = f .

Proof. Assume px(f) < f for some f ∈ TX ⇒ f is not minimal in PX ⇒ f /∈
TX ⇒ px(f) ≥ f , but px(f) ≤ f from Lemma 7 ⇒ px(f) = f ∀f ∈ TX .

Lemma 10. D(px(f), px(g)) ≤ D(f, g) for all f, g ∈ PX .

Proof. Since px(f)(y) − px(g)(y) = f(y) − g(y) ∀y 6= x it suffices to show that
|px(f)(x)−px(g)(x)| ≤ D(f, g). We get the inequality px(f)(x) = supy∈X(0, xy−
f(y)) = supy∈X(0, (xy − g(y)) + (g(y) − f(y))) ≤ supy∈X(0, xy − g(y)) +
supy∈X(0, g(y)− f(y)) ≤ px(g)(x) +D(f, g)⇒

i) px(f)(x)− px(g)(x) ≤ D(f, g)

ii) px(g)(x)− px(f)(x) ≤ D(f, g)

5

i) and ii) imply that |px(f)(x)− px(g)(x)| ≤ D(f, g).

Define the set Φ(X) as the set of all maps p : PX → PX satisfying:

I/ p(f) ≤ f ∀f ∈ PX

II/ D(p(f), p(g)) ≤ D(f, g) ∀f, g ∈ PX

We define a partial order on Φ(X) as: Φ(X) 3 p1 ≤ p2 ∈ Φ(X) if p1(f) ≤
p2(f) ∀f ∈ PX and D(p1(f), p1(g)) ≤ D(p2(f), p2(g)) ∀f, g ∈ PX .

Lemma 11. The set Φ(X) contains minimal elements with respect to the partial
order defined on Φ(X).

Proof. We saw in proof of Lemma 8 that the map pxn ◦ pxn−1 ◦ ... ◦ px1 , PX 3
g 7→ gn ∈ TX was minimal with respect to I/. From Lemma 10 we also see
(using induction) that II/ is satisfied, which proves the theorem.

Lemma 12. For any minimal p ∈ Φ(X), p(PX) ⊆ TX .

Proof. For all x ∈ X we have from Lemma 7: px(p(f)) ≤ p(f) for all f ∈ PX ⇒
px ◦ p = p, since otherwise p would not be minimal. We see (using induction)
that pxn ◦ pxn−1 ◦ ... ◦ px1 ◦ p = p. From proof of Lemma 8 with g = p(f) we get
pxn ◦ pxn−1 ◦ ... ◦ px1 ◦ p(f) ∈ TX , i.e. p(f) ∈ TX .

Let Y be an extension of X and take an arbitrary x ∈ X The function αx :
TX → PY : f 7→ f ′ is defined below.

αx(f) :=
{
f ′(y) = f(y) if y ∈ X
f ′(y) = xy + f(x) for some fixed x ∈ X if y ∈ Y \X

We will now show f ′ is in PY as claimed above. For any x1, x2 ∈ X we have
f ′(x1) + f ′(x2) = f(x1) + f(x2) ≥ x1x2. We have three other possibilities:

i) x1 ∈ Y \X, x2 ∈ X. When this happens f ′(x1) + f ′(x2) = xx1 + f(x) +
f(x2) ≥ xx1 + xx2 ≥ x1x2

ii) x1 ∈ X, x2 ∈ Y \X The proof of this follows from i) due to symmetry

iii) x1, x2 ∈ Y \X. When this happens f ′(x1) + f ′(x2) = xx1 + xx2 + 2f(x) ≥
x1x2 + 2f(x) ≥ x1x2

Lemma 13. Let Y be any extension of X, f ∈ TX and f ′ = αx(f), then
p(f ′)|X ∈ PX for any minimal p ∈ Φ(Y).

Proof. We showed above: f ′ ∈ PY . We have from Lemma 12: p(f ′) ∈ TY .
This implies p(f ′) ∈ PY ⇒ p(f ′)(x) + p(f ′)(y) ≥ xy ∀x, y ∈ Y ⇒ p(f ′)(x) +
p(f ′)(y) ≥ xy ∀x, y ∈ X ⇒ p(f ′)|X ∈ PX .

6

Define the function τ : TX → TY as the composition of p with αx, i.e. τ = p◦αx,
where Y is an extension of X, p is minimal in Φ(Y) and x ∈ X.

Lemma 14. For any minimal p ∈ Φ(Y) and any function f ∈ TX s.t. f ′ =
αx(f), we have p(f ′)|X = f , i.e. τ(f)|X = f .

Proof. p(f ′)|X ∈ PX and p(f ′) ≤ f ′ ⇒ p(f ′)|X ≤ f ′|X = f ∈ TX ⇒ { from
Lemma 8 } ⇒ p(f ′)|X = f .

Lemma 15. D(f ′, g′) = D(f, g) for any two functions f, g ∈ TX , where f ′ =
αx(f) and g′ = αx(g).

Proof. D(f ′, g′) = supx∈Y (|f ′(x)− g′(x)|) = max(D(f ′, g′)|X , D(f ′, g′)|Y \X) =
D(f, g), since D(f ′, g′)|X = D(f, g) and D(f ′, g′)|Y \X = supy∈Y \X(|xy+f(x)−
(xy + g(x))|) = |f(x)− g(x)| ≤ D(f, g).

Lemma 16. If Y is an extension of X, then τ is an isometry from TX into TY ,
i.e. τ : TX ↪→ TY .

Proof. D(f, g) = { from Lemma 14 } = D(τ(f)|X , τ(g)|X) ≤ D(τ(f), τ(g)) =
D(p(f ′), p(g′)) ≤ D(f ′, g′) = { from Lemma 15 } = D(f, g) ⇒ D(f, g) =
D(τ(f), τ(g))⇒ τ : TX ↪→ TY is an isometry.

Lemma 17. If Z is a tight extension of Y and Y is a tight extension of X,
then Z is a tight extension of X.

Proof. Assume Z is not a tight extension ofX ⇒ there exists a distance function
d and points z1, z2 ∈ Z, s.t. d(z1, z2) < z1z2. We have five possibilities to
consider:

i) z1, z2 ∈ Z \ Y

ii) z1, z2 ∈ Y \X

iii) z1 ∈ Z \ Y, z2 ∈ Y \X

iv) z1 ∈ Y \X, z2 ∈ X

v) z1 ∈ Z \ Y, z2 ∈ X

The options i), iii) and v) are not possible since this would imply that Z is not
a tight extension of Y . The options ii) and iv) are not possible since this would
imply that Y is not a tight extension of X.

Definition of contraction map 3. A map φ : Y → E from a tight extension
Y of a metric space X to an extension E of X satisfying dE(φ(y1), φ(y2)) ≤
dY (y1, y2) for all y1, y2 ∈ Y and φ(x) = x for all x ∈ X is called a contraction
map.

Lemma 18. The contraction map φ : Y → E from a tight extension Y of a
metric space X to an extension E of X is an isometry.

7

Proof. Define the distance function d′Y : Y×Y → R as d′Y (y1, y2) := dE(φ(y1), φ(y2)).
Assume φ is not an isometry, i.e. (Y, dY) is not isometric to (E, dE)⇒ d′Y (y1, y2) =
dE(φ(y1), φ(y2)) 6= dY (y1, y2) for some y1, y2 ∈ Y ⇒ d′Y (y1, y2) = dE(φ(y1), φ(y2)) <
dY (y1, y2) for some y1, y2 ∈ Y , since φ was a contraction map. We have

i) d′Y (x1, x2) = dE(φ(x1), φ(x2)) = dE(x1, x2) = dX(x1, x2) ∀x1, x2 ∈ X

ii) d′Y (y1, y2) = dE(φ(y1), φ(y2)) ≤ dY (y1, y2) ∀y1, y2 ∈ Y

iii) d′Y (y1, y2) < dY (y1, y2) for some y1, y2 ∈ Y

i) says that (Y, d′Y) is an extension of (X, dX). ii) together with iii) implies that
(Y, dY) is not a tight extension of X. This implies that the assumption is wrong,
i.e. φ is an isometry.

Let us define a map ψ1 : TY → τ(TX) ⊆ TY , f 7→ τ(p(f |X)), where p is minimal
in Φ(X) and where Y is a tight extension of X.

Lemma 19. The map ψ1 is a contraction map.

Proof. TY is a tight extension of Y (by Corollary 1) and Y is a tight extension
of X, hence (by Lemma 17) TY is a tight extension of X. We get that τ(TX) is
an extension of X since TX is an extension of X and τ is an injective function
and isometry between TX and τ(TX), i.e. TX and τ(TX) are isomorphic. We
thus have that x 7→ τ(hx) ∀x ∈ X is an isometric embedding of X.

Take any two functions f, g ∈ TY . D(ψ1(f), ψ1(g)) = D(τ(p(f |X)), τ(p(g|X))) =
D(p(f |X), p(g|X)) ≤ D(f |X , g|X) ≤ D(f, g).

The only thing left to show is that ψ1(τ(hx)) = τ(hx) ∀x ∈ X. This is eas-
ily shown using the facts τ(f)|X = f and p(f) = f ∀f ∈ TX , which implies
ψ1(τ(hx)) = τ(p(τ(hx)|X)) = τ(p(hx)) = τ(hx) ∀x ∈ X.

Let us define a map ψ2 : TY → TX , f 7→ p(f |X), where p is minimal in Φ(X)
and where Y is a tight extension of X.

Lemma 20. TY is isometric to TX , where Y is a tight extension of X.

Proof. From Lemma 18 and 19 we get that TY is isometric to τ(TX). This
implies that TY is isometric to TX , since TX is isomorphic to τ(TX). One
isometry between TY and TX is thus the map ψ2.

Lemma 21. The function ψ2 : TY → TX is surjective for every tight extension
Y of X.

Proof. We have the function τ : TX → TY defined earlier satisfying τ(f)|X = f
for all f ∈ TX . Take any f ∈ TX ⇒ f = p(f) = p(τ(f)|X) = ψ2(τ(f)) ⇒ ψ2 is
surjective since f was an arbitrary function in TX and τ(f) ∈ TY .

Lemma 22. The function ψ2 : TY → TX is an isomorphism for every tight
extension Y of X.

8

Proof. ψ2 is an isomorphism between TY and TX since it is both surjective (see
Lemma 21) and an isometry (see proof of Lemma 20).

Theorem 2. The function ψ : Y → TX := y 7→ hy|X is an isometric embedding
of Y into TX , where Y is a tight extension of X.

Proof. From Lemma 21 we have: ψ2(τ(f)) = f , i.e. τ : TX → TY is the inverse
isomorphism. For any f ∈ TY we have that ψ2(f) = τ(ψ2(f))|X = f |X , i.e. the
retraction p is unnecessary in the the definition of ψ2. We then have that the
restriction map f 7→ f |X induces an isomorphism between TY and TX , where
Y is tight of X.

Since y 7→ hy is an isometric embedding of Y into TY and TY and TX are
isomorphic via ψ2 : hy 7→ hy|X , this implies that ψ : Y → TX := y 7→ hy|X is
an isometric embedding of the tight extension Y of X into TX .

The map below over the spaces and their functions is a good way of summarizing
the basic theory of Tight Span.

TX
τ **

TYψ2
jj

X
?�

x 7→hx

OO

� � // Y
?�

y 7→hy

OO

ψCCCC

aaCCC

Theorem 3. An extension Y of a metric space X is tight only if y1y2 =
supx1,x2∈X(x1x2 − x1y1 − x2y2) for all y1, y2 ∈ Y .

Proof. Assume we have an extension Y of X which is tight. y1y2 = { from
Theorem 2 } = D(ψ(y1), ψ(y2)) = { from proof of Corollary 1 with f = ψ(y1) ∈
TX and g = ψ(y2) ∈ TX } = supx1,x2∈X(x1x2 − ψ(y1)(x1) − ψ(y2)(x2)) =
supx1,x2∈X(x1x2−hy1 |X(x1)−hy2 |X(x2)) = supx1,x2∈X(x1x2− y1x1− y2x2) for
all y1, y2 ∈ Y .

4 Why Tight Spans are interesting

One interesting property of Tight Span is that if the under laying metric X can
be realized by a tree, then the Tight Span TX will give us just that tree. This
is proved in [1] on pages 359-364.

Now I am going to state a conjecture given by Andreas W.M.Dress [1] on pages
342-345. The conjecture is:

Conjecture 1. Let T = (V,E, l) be an optimal realization of the finite metric
space X ⊆ V . Let ψ : V → TX be defined by ψ(v) = p(hv|X) for all v ∈ V .
Then the maps ψ : V → TX are injective.

I will give you an idea of how Conjecture 1 may be proved. First I prove a
Lemma below (23), and then I state another Lemma (2). A proof of the second
Lemma (2) will prove Conjecture 1.

9

Lemma 23. If (X, d) is a finite metric space, then every optimal realization
T = (V,E, l) of (X, d) is a metric space (V, l) s.t. l|X = d, i.e. (V, l) is an
extension of (X, d).

Proof. We can define a distance function l as: l(x, y) := shortest_path(x, y)
for all x, y ∈ V since T was a realization of X. We have that (V, l) is a met-
ric, since l(x, y) ≤ l(x, z) + l(z, y). Assume this is not the case then we have
shortest_path(x, y) > shortest_path(x, z) + shortest_path(z, y). This is not
possible since it would imply that there exists a shorter path from x to y than
shortest_path(x, y). The rest of the requirements of a metric ((M1) to (M3))
are obvious.

Conjecture 2. If T = (V,E, l) is an optimal realization of (X, d), then (V, l)
is a tight extension of (X, d).

Assume (V, l) is not a tight extension of (X, d). If this is the case we have an
extension (V, l′) of (X, d) s.t. l′(x, y) ≤ l(x, y) for all x, y ∈ V and at least two
points v1 and v2 in V for which l′(v1, v2) < l(v1, v2).

If we can prove that this implies that at least one distance l′(xe, ye) in the path
between v1 and v2 in (V, l′) is shorter than the corresponding edge in (V,E, l),
then the proof of Conjecture 1 will follow from the arguments below.

Each edge is used in (V,E, l) since otherwise T = (V,E, l) would not be optimal.
This implies that there exists points s, t in X s.t. we use the edge (xe, ye) when
calculating shortest_path(s, t) = d(s, t) in (V,E, l). If we walk the same path
from s to t in (V, l′) we get a shorter distance since l′(x, y) ≤ l(x, y) for all
x, y ∈ V and l′(xe, ye) < l(xe, ye), i.e. l′(s, t) < d(s, t) since otherwise we
would violate the triangle inequality; thus (V, l′) is not an extension. We get a
contradiction to the assumption which implies that (V, l) is a tight extension of
(X, d).

Theorem 4. Conjecture 2 imply Conjecture 1.

From Theorem 2 we saw that if V was a tight extension of X, then ψ : V → TX
defined as V 3 v 7→ hv|X ∈ TX was an isometric embedding of V into TX and
thus injective. Since f |X = p(f |x) for all f in TV and in particular hv|X =
p(hv|x) for all v in V , the truth of Conjecture 1 follows from Conjecture 2.

5 Algorithm using Tight Span

I have constructed an algorithm in C++, which uses Tight Span from Polymake
to construct trees from given metrics. It can be of great interest to see how good
the algorithm is, so I have also made an algorithm which makes metrics from
random trees and then perturbs them so they will no longer be trees. This
algorithm can be used among others for statistical purposes, to evaluate the
power of the tree making algorithm, and also to compare my algorithm (called
ts2tree) with other tree making algorithms. In the subsections down under you

10

can read in detail what the different programs (create random tree, modify tree
and treeify) do, and see how treeify both in picture and pseudo code works.

5.1 Create random tree

Here we can construct random binary trees with optional number of leaves (spe-
cies). Let say that we have chosen to create a tree with n leaves. The algorithm
create random tree (or for short crt) consists of two separated recursive func-
tions. The first function is called create tree, where you create the random
topology of the tree. The randomness of create tree is such that it creates re-
cursively a left tree with k number of leaves and a right tree with n− k number
of leaves. The integer k is an integer uniformly distributed between 1 and n−1.
The second function is called build graph. This function calls create tree (takes
create tree as an argument) and calculate the random (uniformly distributed
between 1 and max_edge_length, which I have set to three) length of each
edge in the tree and finally return the matrix of this tree metric.

5.2 Modify tree

From crt we get a tree metric matrix M . In this algorithm we want to mimic
both the errors coming from the evolving nature and those coming from the
way we define the distances between any pair of species. These distances can
be defined for example as the Hamming distance between some comparable
DNA-sequences in the species. In –modify-tree we can perturb the trees in two
different ways, either –normal or –uniform and we can also precise the amount
of deviation from the tree metric we want with <deviation>. If we choose –
uniform and some deviation δ, the program returns for each distance d(x, y)
in M the number d(x, y) + d(x, y) ∗ δ ∗ (1 − 2 ∗ random()), where random()
gives a uniformly distributed number between zero and one, to M . The perhaps
more natural way of perturbing the tree comes from –normal. In this method
I have thought it reasonable to assume that every unit distance is a stochastic
variable normally distributed around the unit distance with standard deviation
equal to that of <deviation>. To randomize the lengths I have transformed
the uniformed distribution to normal distribution through a process called Box-
Muller transform. There is a possibility that the perturbed metric is not a metric
in which case we could get strange out puts from –treeify, since the Tight Span
needs a metric. The program can handle this and will ask you to decrease the
deviation and hence increase the probability to get a perturbed tree, which is a
metric.

5.3 Treeify

This is the main program. It uses the well known Dijkstra’s method (see [6]) to
compute the shortest path between a source point (start point) and its target
points (finish points) in undirected positive weighted connected graphs. It also

11

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6
7

8

9 10

11

12

13

14

0

1

2

3

4

5

6

7

8

9

10

11

12

13

0

1

2

3

4

5

6
7

8

9

10

11

12

0

1

2

3

4

5

6

7

8

9

10

11

0

1

2

3

4

5

6

7

8

9

10

0

1

2

3

4

5

6
7

8
9

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

Figure 1: Upper picture shows original tree structure. The eight small pictures,
from left to right, represent the progress of the algorithm.

uses the Tight Span computed from the program Polymake[4]. The main idea
is following.

1 Compute the weighted Tight Span graph G from Polymake, i.e. its vertex
set V and its edge set E with corresponding weights w(E). We also need the
subset Vinterior consisting of all vertices in V which is not the original points in
the metric, i.e. a vertex from Vinterior is not one of the species. In the same
way we define Einterior as E|Vinterior×Vinterior and its weight function winterior as
w|Einterior . Each vertex v in Vinterior has an integer weight W (v) which will be

12

used in step four (see 4). When the algorithm starts W (v) = 1 for all vertices
v in Vinterior. Let Vspecies = Vexterior := V \ Vinterior.
2 Test all the possibilities to identify vertices from Vinterior with their neighbours
in Vinterior if and only if they are in a cycle.

3 Evaluate how good it is to identify one vertex with another vertex (in 2). We
pick out the two vertices which minimizes the error if joined. In ts2tree you have
the option to choose which error you want to minimize. You have three options.
The first one is called –minimum-sum, which minimizes

∑
x,y∈Vspecies

|d(x, y)−
shortest(x, y)|, where shortest(x, y) is the shortest path between the species x
and y inG. The second option is –minimum-square, which minimizes

∑
x,y∈Vspecies

(d(x, y)−shortest(x, y))2. The third and last option is called –supremum, which
minimizes supx,y∈X(|d(x, y)− shortest(x, y)|). This is probably the most inter-
esting choice, since the Tight Span is constructed by the sup function.

4 From now on we have chosen one of the three options and have contracted
the pair (xmin, ymin) to a single point z. The new point z will get the co-
ordinates of the old coordinates as zcoord := (W (xmin) ∗ xmin.coord +W (ymin) ∗
ymin.coord)/(W (xmin)+W (ymin)), the weight W (z) := W (xmin)+W (ymin) and
the edge set of z will be defined as the union of the edge sets of xmin and ymin.
The weights are needed to make the algorithm not as dependent of the order
we join the vertices and also in a sense say that each vertex of Vinterior will play
as big role as any one else in the end. We can now define the distances between
z and its neighbours and can thus remove xmin, ymin and there respective edge
sets from the graph and add the new point z along with its edges to the graph
(see picture 1).

5 When we have done step 4, we have got a graph with one vertex less. We
iterate 2 ,3 ,4 as long we have cycles in the graph. When we have no cycles left,
we have a tree.

6 There might be some branches in the tree that will not reach out to species.
If this is the case you can simplify this tree to a tree where all branches reach
out to species, i.e. all unnecessary edges will be deleted. This is done with the
option [–simplify]. The simplified tree will get new edge lengths as the method
weights in the extra nodes in the simplified tree. In most cases this will yield
a greater error, though the topology of the simplified tree is more interesting.
You can also just ignore the extra branches from the original tree if you are
more interested of the lengths of the tree than you are of the topology.

13

The pseudo code below of Treeify can be interesting to read.

TREEIFY(g, errortype())
while g 6= cyclic

error ←∞
for each edge(i, j) ∈ (Vinterior×Vinterior)

g’ ← identify(g, i, j)
if errortype(g, g’) < error

error ← errortype(g, g’)
gtemp ← g’

TREEIFY(gtemp, errortype())

6 Testing ts2tree

I have made two random trees to test how good the algorithm ts2tree is. The
first tree consists of six species and the second tree consists of eight species.
For both trees I have added two uniform deviations (u(δ)) and two normal
deviations (n(δ)). For each deviation I have run all three algorithms (minimum
sum, minimum square and supremum). To check whether or not the algorithms
give the original tree from the perturbed one I have also simplified all trees
using the option [–simplify] described in Section 5.3 and then checked if the
trees have the same structure. The metrics of the original trees and the results
of the computer calculations are displayed in the tables on the following two
pages.

The columns in the calculation tables show the results of the three different ways
of identifying points in the Tight Span. The rows show the three different types
of deviation, where u stands for uniform deviation and n stands for normal
deviation, along with the deviations of the simplified trees. They also show
if the final result is topological isomorphic with the original tree (before the
perturbation).

An upper bound of the running time of the algorithm is (k5), where k is the
number of vertices obtained from Polymake’s Tight Span function. This can
be shown using the worst case scenario, i.e. we get a complete graph from the
Tight Span. If this happens, we have to check O(k2) possible ways of identifying
points. For every identification we use the Dijkstra algorithm to calculate the
shortest paths, which is O(k2). It clearly takes O(k4) number of operations to
get a graph with one vertex less (following the arguments above). We can only
get a graph with one vertex less O(k) times before we get our tree. So the total
running time of the algorithm is O(k5).

14

Tree 1′s metric =



0 9 9 5 5 6
9 0 4 6 10 13
9 4 0 6 10 13
5 6 6 0 6 9
5 10 10 6 0 9
6 13 13 9 9 0


Tree 1 min.sum min.sqr supremum

mean sum u(0.2) 0.5190 0.4042 0.5099
simplified 0.5111 0.4042 0.5111
mean sqr u(0.2) 0.1087 0.0842 0.1106
simplified 0.1131 0.0842 0.1131
supremum u(0.2) 0.9877 1.0227 1.0079
simplified 1.0521 1.0227 1.0521
top. iso. false true false
mean sum u(0.1) 0.2062 0.2062 0.1988
simplified 0.2062 0.2062 0.1988
mean sqr u(0.1) 0.0439 0.0439 0.0469
simplified 0.0439 0.0439 0.0469
supremum u(0.1) 0.4226 0.4226 0.4622
simplified 0.4226 0.4226 0.4622
top. iso. true true true
mean sum n(0.15) 0.8885 0.5712 0.7181
simplified 0.8821 0.5712 0.7110
mean sqr n(0.15) 0.1987 0.1225 0.1538
simplified 0.1974 0.1225 0.1532
supremum n(0.15) 2.3488 1.2307 1.5539
simplified 2.365 1.2307 1.5539
top. iso. false true false
mean sum n(0.075) 0.1721 0.1721 0.1883
simplified 0.1936 0.1936 0.1936
mean sqr n(0.075) 0.0372 0.0372 0.0389
simplified 0.0298 0.0298 0.0298
supremum n(0.075) 0.4305 0.4305 0.3754
simplified 0.4191 0.4191 0.4191
top. iso. true true true

15

Tree 2′s metric =



0 13 14 12 11 12 12 11
13 0 7 5 8 13 13 12
14 7 0 4 9 14 14 13
12 5 4 0 7 12 12 11
11 8 9 7 0 11 11 10
12 13 14 12 11 0 4 7
12 13 14 12 11 4 0 7
11 12 13 11 10 7 7 0


Tree 2 min.sum min.sqr supremum

mean sum u(0.15) 1.1804 1.2097 1.1909
simplified 1.1970 1.2097 1.1909
mean sqr u(0.15) 0.1900 0.1943 0.1869
simplified 0.1932 0.1943 0.1869
supremum u(0.15) 2.4926 2.4755 2.4599
simplified 2.5127 2.4755 2.4599
top. iso. false false false
mean sum u(0.075) 0.3724 0.3724 0.3960
simplified 0.3886 0.3886 0.3960
mean sqr u(0.075) 0.0587 0.0587 0.0645
simplified 0.0615 0.0615 0.0645
supremum u(0.075) 0.9716 0.9716 1.0557
simplified 0.9575 0.9575 1.0557
top. iso. true true true
mean sum n(0.1) 0.7093 0.7055 1.0992
simplified 0.8101 0.8101 1.1409
mean sqr n(0.1) 0.1199 0.1190 0.1718
simplified 0.1322 0.1322 0.1809
supremum n(0.1) 1.6806 1.6717 2.2302
simplified 1.9935 1.9935 2.2999
top. iso. false false false
mean sum n(0.05) 0.4707 0.5710 0.5710
simplified 0.4941 0.5710 0.5710
mean sqr n(0.05) 0.0769 0.0901 0.0901
simplified 0.0791 0.0901 0.0901
supremum n(0.05) 1.2431 1.4765 1.4765
simplified 1.2268 1.4765 1.4765
top. iso. true false false

16

As you can see, the simplified trees often give a slightly bigger error than the
unsimplified ones. I have added all errors from the unsimplified trees. From this
I have concluded that minimum square is on average best (with error 14.6642
and five out of eight tests give correct tree structure), minimum sum comes
second (with error 15.9304 and four out of eight tests give correct tree structure)
and supremum comes last (with error 16.3573 and three out of eight tests give
correct tree structure). The interesting thing is that even if the tree structure is
not completely right it is always really close. The only error I have encountered
happens when the algorithm contracts short edges.

What is the weakness and strength of ts2tree? The strength of ts2tree is mainly
the accuracy of getting the right tree. The larger deviations of both trees some-
times give a matrix which is not a metric, so it is really good of the algorithm
to get so many trees topologically correct. The weakness is mainly the speed.
Suppose the Tight Span returns O(n4) vertices (if n is the number of species).
The running time of Treeify will become O(n20), i.e. if we double the number
of species, then it will take approximately one million times longer to solve the
problem.

7 Another approach

In genetics it is interesting to find best fitting trees (trees that realize the metric
(X, d) as good as possible). Here I want to find a d’ which minimizes

∑
x,y∈X |

d′(x, y) − d(x, y) |= γ, where d′ is a tree metric defined on X. To make trees
you have to connect some points in X. To choose points to connect we want to
know how much error this causes. We want to minimize thees errors. First we
get some useful notation and definitions.

7.1 Notation and definitions

Let |X| denote the number of points in X and let (X, d) be a finite metric space.
Define a tree structure M which has properties:

1) Vl(q)
q ∈M is associated with a subset Vq ⊂ X

2) l(q) = |Vq|, i.e. l(q) stands for the number of leaves in Vl(q)
q

3) Vl(q)
q has pointers (edges) to two subtrees Vl(q)1

q ∈ M and Vl(q)2

q ∈ M s.t.
V1
q ∪V2

q = Vq, V1
q ∩V2

q = {φ}

4) Vl(q)
q contains the submetric d(x, y)|Vq defined on Vq

5) Between any two Vl(q)1

q and Vl(q)2

q there is defined a distanceD(Vl(q)1

q ,Vl(q)2

q) :=
(
P

x∈V1
q,y∈V2

q
d(x,y))−(D(V

l(q)1

q)+D(V
l(q)2

q))

l(q)1l(q)2

6) Vl(q)
q has a number D(Vl(q)

q), which is defined as the sum of the lengths to
the root Vl(q)

q , i.e. D(Vl(q)
q) := D(Vl(q)1

q) +D(Vl(q)2

q) +D(Vl(q)1

q ,Vl(q)2

q)

17

7) If l(q) = 1 then D(Vl(q)=1
q) := 0

8) The edge (Vl(q)1

q ,Vl(q)
q) has a length defined as: D(Vl(q)1

q ,Vl(q)
q) := D(V

l(q)1

q ,V
l(q)2

q)
2 −

α(Vl(q)1

q ,Vl(q)2

q)

The edge (Vl(q)2

q ,Vl(q)
q) has a length defined as: D(Vl(q)2

q ,Vl(q)
q) := D(V

l(q)1

q ,V
l(q)2

q)
2 +

α(Vl(q)1

q ,Vl(q)2

q)

9) α(Vl(q)1

q ,Vl(q)2

q) :=
P

a∈X\Vq
(D(V

l(q)2

q ,a)−D(V
l(q)1

q ,a))

2(|X|−(l(q)1+l(q)2))

10) D(Vl(q)
q , a) := l(q)1D(V

l(q)1

q ,a)+l(q)2D(V
l(q)2

q ,a)−(l(q)1D(V
l(q)1

q ,V
l(q)
q)+l(q)2D(V

l(q)2

q ,V
l(q)
q))

l(q)1+l(q)2

11) If l(q) = 1 then D(Vl(q)=1
q , a) := d(x, a) where x is the only point in Vq

12) The distance G(x, y) between any two points x, y ∈ Vq is defined to be the
sum of all edge lengths in the path between x and y. G(x, x) is defined to
be zero for all points x ∈ Vq

13) The distance G(x, a) between any points x ∈ Vq, a ∈ X \ Vq is defined to be
the sum of all edge lengths in the path between x and Vl(q)

q added to the
distance D(Vl(q)

q , a)

14) The tree Vl(q)
q has an error ERROR(Vl(q)

q) :=
P

x∈Vq

P
y∈X |d(x,y)−G(x,y)|

l(q)(l(q)−1)
2

+l(q)(|X|−l(q))

7.2 Step 1

X is partitioned in trees, i.e. X = {Vl(1)
1 ,Vl(2)

2 , ...,Vl(n)
n }. When the algorithm

starts l(1) = l(2) = ... = l(n) = 1, i.e. V1, V2, ..., Vn are single points.

7.3 Step 2

For all i, 1 ≤ i ≤ n join Vi with Vj for all j, 1 ≤ j ≤ n for which i 6= j. When we
join Vi with Vj we test the possibilities of connecting V ′

i s root with all edges of
Vj and choose the one connection which minimizes the increase of error.

7.4 Step 3

We iterate step 2 until we just have one tree left.

18

A Definitions

Definition of metric spaces 1. A metric space (X, d) is a set of points in
X with a real valued function d defined on X × X where the following four
properties must be satisfied for all x, y, z ∈ X
(M1) d(x, y) ≥ 0
(M2) d(x, y) = 0⇔ x = y
(M3) d(x, y) = d(y, x)
(M4) d(x, z) + d(z, y) ≥ d(x, y)
From now on xy will denote the distance d(x, y) in X.

Definition of isometry 2. An isometry is a relation (function) between two
metric spaces. If (X, d) and (X ′, d′) are metric spaces and there exists a function
f : X → X ′ s.t. d(x, y) = d′(f(x), f(y)) for all x, y ∈ X, then we say that f is
an isometry. If there exists an isometry f , f : X → X ′, then we say (X, d) is
isometric to (X ′, d′).

Definition of pointwise partial order 3. A function f is defined to be smaller
than a function g iff f(x) ≤ g(x) for all x ∈ X and f(y) < g(y) for some y ∈ X.

Definition of partially ordered sets 4. If M is a set, then a partial order
on M is a relation (M,≤), which satisfies:
Reflexivity if x ∈M ⇒ x ≤ x
Antisymmetry if x, y ∈M,x ≤ y and y ≤ x⇒ x = y
Transitivity if x, y, z ∈M,x ≤ y and y ≤ z ⇒ x ≤ z

Definition of minimal element 5. if (M,≤) is a partially ordered set. Then
m ∈M is a minimal element, if x ≤ m⇒ x = m for each x ∈M .

19

References

[1] Andreas W. M Dress, Trees, Tight Extensions of Metric Spaces, and the
Cohomological Dimension of Certain Groups: A Note on Combinatorial
Properties of Metric Spaces, Advances in Mathematics, Vol 53, No. 4, Sep.
1984

[2] Alice Lesser, Hereditarily Optimal Realizations, Publications in Mathemat-
ics, Uppsala University, No. 45, Dec. 2004

[3] Henrik Baarnhielm, Tychonoffs sats, http://henrik.baarnhielm.net

[4] Copyright c© 1997 - 2006 · Ewgenij Gawrilow and Michael Joswig · TU
Berlin and TU Darmstadt, http://www.math.tu-berlin.de/polymake/

[5] A. Dress, K. T. Huber and V. Moulton, An Explicit Computation of the
Injective Hull of Certain Finite Metric Spaces in Terms of their Associated
Buneman Complex, Advances in Mathematics, University of Bielefeld and
Mid Sweden University, No. 168, Sep. 2001

[6] Thomas H. Cormen, Charles E. Leiserson, Ronald L.Rivest and Clifford
Stein, Introduction to Algorithms, The MIT Press, Second Edition, 2001

[7] http://en.wikipedia.org/wiki/Normal_distribution

[8] Gunnar Blom, Sannolikhetsteori och statistikteori med tillämpningar, Stu-
dentlitteratur, Fourth Edition, 1989

20

