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Abstract—We present an axiomatic framework for seeking dis-
tances between power spectral density functions. The axioms re-
quire that the sought metric respects the effects of additive and
multiplicative noise in reducing our ability to discriminate spectra,
as well as they require continuity of statistical quantities with re-
spect to perturbations measured in the metric. We then present a
particular metric which abides by these requirements. The metric
is based on the Monge-Kantorovich transportation problem and is
contrasted with an earlier Riemannian metric based on the min-
imum-variance prediction geometry of the underlying time-series.
It is also being compared with the more traditional Itakura-Saito
distance measure, as well as the aforementioned prediction metric,
on two representative examples.

Index Terms—Geodesics, geometry of spectral measures, met-
rics, power spectra, spectral distances.

I. INTRODUCTION

A key element of any quantitative scientific theory is a well
defined and natural metric. A model for the development

of such metrics is provided, in the context of information theory
and statistics, in the work of Fisher, Rao, Amari, Centsov,
and many others, via an axiomatic approach where the sought
metric is identified on the basis of a natural set of axioms—the
main one being the contractiveness of stochastic maps. The
subject of the present paper is not the geometry of information,
but instead, the possibility of analogous geometries for power
spectra starting from a similar axiomatic rationale. Specifically,
we seek a metric between power spectra which is contractive
when noise is introduced, since intuitively, noise impedes our
ability to discriminate. Further, we require that statistics are
continuous with respect to spectral uncertainty quantified by
the sought metric. We build on [25] where a variety of potential
metrics were studied using complex analysis. The focus of
the current paper is twofold, firstly to propose a natural set
of axioms that geometries for power spectra must satisfy, and
secondly to present a particular candidate which abides by the
stated axioms. This metric is based on the Monge-Kantorovich
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transportation problem and represents a relaxation of Wasser-
stein distances so as to be applicable to power spectra.

In Section II, we outline and discuss the axiomatic frame-
work. In Section III, we contrast the present setting with two
alternatives, first the axiomatic basis of Information Geometry
and then with a geometry that is inherited by linear prediction
theory. In Section IV, we present basic facts of the Monge-
Kantorovich transportation problem which are then utilized in
Section V in order to develop a suitable family of metrics satis-
fying the axioms of the sought spectral geometry.

II. MORPHISMS ON POWER SPECTRA

We consider power spectra of discrete-time stochastic pro-
cesses. These are bounded positive measures on the interval

(with the end points identified) or, in the case of
real-valued processes, on and the set of such mea-
sures is denoted by

The physics of signal interactions suggests certain natural mor-
phisms between spectra that model mixing in the time-domain.
The most basic such interactions, additive and multiplicative,
adversely affect the information content of signals. It is our aim
to devise metrics that respect such a degradation in information
content. Another property that ought to be inherent in a metric
geometry for power spectra is the continuity of statistics. More
specifically, since modeling and identification is often based on
statistical quantities, it is natural to demand that “small” changes
in the spectral content, as measured by suitable metrics, result
in small changes in any relevant statistical quantity.

Consider a discrete-time stationary (in general com-
plex-valued) random process , or simply
for short, with corresponding power spectrum . The
sequence of covariances

where denotes expectation and “ ” denotes complex con-
jugation, are the Fourier coefficients of , i.e.

In general, second-order statistics are integrals of the form

for an arbitrary vectorial integration kernel which is con-
tinuous in and periodic with period . For future refer-
ence, we denote the set of such functions by .
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Now, suppose that represents the power spectrum of an
“additive-noise” process which is independent of . Then the
power spectrum of is simply . Similarly, if

represents the power spectrum of a “multiplicative-noise”
process , the power spectrum of the point-wise product
is the circular convolution

for example, satisfies

where the arguments are interpreted modulo .
We postulate situations where we need to discriminate be-

tween two signals on the basis of their power spectra and of
their statistics. In such cases, additive or multiplicative noise
may impede our ability to differentiate between the two. Thus,
we consider noise spectra as morphisms on that transform
power spectra accordingly. Additive and multiplicative noise
morphisms are defined as follows:

for any , and

for any , normalized so that . The normal-
ization is such that multiplicative noise is perceived to affect the
spectral content but not the total energy of underlying signals.

The effect of additive independent noise on the statistics of
a process is also additive, e.g., covariances of the process are
transformed according to

where denotes the corresponding covariances of the noise
process. Similarly, multiplicative noise transforms the process
statistics by pointwise multiplication (Schur product) as fol-
lows:

More generally, for statistics with re-
spect to an arbitrary kernel , where denotes point-wise
multiplication of the vectors , .

Consistent with the intuition that noise masks differences
between two power spectra, it is reasonable to seek a metric
topology, where distances between power spectra are non-in-
creasing when they are transformed by any of the above two
morphisms. More precisely, we seek a notion of distance
on with the following properties:

Axiom i) is a metric on .
Axiom ii) For any , is contractive on
with respect to the metric .
Axiom iii) For any with , is
contractive on with respect to the metric .

The property of a map being contractive refers to the require-
ment that the distance between two power spectra does not in-
crease when the transformation is applied.

An important property for the sought topology of power
spectra is that small changes in the power spectra are reflected
in correspondingly small changes in statistics. More precisely,
any topology induces a notion of convergence, and the question
is whether this topology is compatible with the topology of
the Euclidean vector-space where (finite) statistics take their
values. Continuity of statistics to changes in the power spectra
is necessary for quantifying spectral uncertainty based on
statistics. The property we require is referred to as (sequential)

-continuity and is abstracted in the following statement.
Axiom iv) Let and a sequence for

. Then as , if and only if

for any .
Remark 1: Because the underlying space is compact,

and sequential -continuity coincide and no distinction
will made henceforth.

III. REFLECTIONS AND CONTRAST WITH INFORMATION

GEOMETRY

The search for natural metrics between density functions can
be traced back to the early days of statistics, probability and
information theory. According to Chentsov [11, p. 992], [1],
Kolmogorov was “always interested in finding information dis-
tances” between probability distributions. In his notes he em-
phasized the importance of the total variation

as a metric, and he independently arrived at and discussed the
relevance of the Bhattacharyya [7] distance

(1)

as a measure of unlikeness of two measures , . Both sug-
gestions reveal great intuition and foresight. The total variation
admits the following interpretation (cf. [16]) that will turn out
to be particularly relevant in our context: the total variation rep-
resents the least “energy” of perturbations of two power spectra

and that render the two indistinguishable, i.e.

(2)

On the other hand the Bhattacharyya distance turned out to have
deep connections with Fisher information, the Kullback-Leibler
divergence, and the Cramér-Rao inequality. These connections
underlie a body of work known as Information Geometry which
was advanced by Amari, Nagaoka, Chentsov, and others [3],
[12], [22]. At the heart of the subject is the Fisher information
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metric on probability spaces and the closely related spherical
Fisher-Bhattacharyya-Rao metric

(3)

This latter metric is precisely the geodesic distance between two
distributions in the geometry of the Fisher metric. One of the
fundamental results of the subject is Chentsov’s theorem. This
theorem states that stochastic maps are contractive with respect
to the Fisher information metric and moreover, that this metric
is in fact the unique (up to constant multiple) Riemannian metric
with this property [12]. Stochastic maps represent the most gen-
eral class of linear maps which map probability distributions to
the same. Stochastic maps model coarse graining of the outcome
of sampling, and thus, form a semi-group. Thus, it is natural to
require that any natural notion of distance between probability
distributions must be monotonic with respect to the action of
stochastic maps.

An alternative justification for the Fisher information metric
is based on the Kullback-Leibler divergence

between probability distributions. The Kullback-Leibler diver-
gence is not a metric, but quantifies in a very precise sense the
difficulty in distinguishing the two distributions [24]. In fact, it
may be seen to quantify, in source coding for discrete finite prob-
ability distributions, the increase in the average word-length
when a code is optimized for one distribution and used instead
for encoding symbols generated according to the other. The dis-
tance between infinitesimal perturbations, measured using ,
is precisely the Fisher information metric. It is quite remarkable
that both lines of reasoning, degradation of coding efficiency
and ability to discriminate on one hand and contractive-ness of
stochastic maps on the other, lead to the same geometry on prob-
ability spaces.

Turning again to power spectra, we observe that can be
used as a metric and has a natural interpretation as explained
earlier. The metric on the other hand can also be used, if
suitably modified to account for scaling, but lacks an intrinsic
interpretation. A variety of other metrics can also be placed
on (cf. [18], [19], [26]), mostly borrowed from functional
analysis, which may similarly lack an intrinsic interpretation.
Thus, the signal processing community focused instead on other
metric-like quantities, as the so-called Itakura-Saito distance
[18, Eq. (16)]

which have been motivated in the context of linear prediction
[18], [27]. The Itakura-Saito distance in particular is intimately
related to the probability structure of underlying processes for
the Gaussian case and to their distance in the Kullback-Leibler

divergence (see, for instance, [23] and [28]). A closely related
metric was presented in [14] and [15], which quantifies in a
precise way the degradation of predictive error variance --in
analogy with the latter argument that led to the Fisher metric.
More specifically, a one-step optimal linear predictor for an un-
derlying random process is obtained based on a given power
spectrum, and then, this predictor is applied to a random process
with a different spectrum. The degradation of predictive error
variance, when the perturbations are infinitesimal, gives rise to
a Riemannian metric. In this metric, the geodesic distance be-
tween two power spectra is

(4)
which effectively depends on the ratio of the corresponding
spectral densities. Interestingly, this metric is a “normalized ver-
sion” of the so-called log-spectral distance [26, Eq. (78)]

which is commonly used without any intrinsic justification. A
similar rationale that leads to (4) can be based on degradation
of smoothing-variance instead of prediction (see [14] and [15]),
and this also leads to expressions that weigh in ratios of the
corresponding spectral density functions, i.e., it is the ratios of
the absolutely continuous part of the measures that play any role.

A possible justification for such metrics which weigh in only
the ratio of the corresponding density functions can be sought in
interpreting the effect of linear filtering as a kind of processing
that needs to be addressed in the axioms. More specifically, the
power spectrum at the output of a linear filter relates to the power
spectrum of the input via multiplication by the modulus square
of the transfer function. Thus, a metric that respects such “pro-
cessing” ought to be contractive (and possibly invariant). How-
ever, it turns out that such a property is incompatible with the
spectral properties that we would like to have, and in particular
it is incompatible with the ability of the metric to localize a mea-
sure based on its statistics (cf. Axiom iv)). This incompatibility
is shown next.

Consider morphisms on that correspond to processing by
a linear filter

for any . Here, is thought of as the transfer function
of the filter, the power spectrum of the input, and the
power spectrum of the output.

Proposition 2: Assume that is a -continuous
metric on . Then there exists such that is not
contractive with respect to .

Proof: We will prove the claim by showing that whenever
is a -continuous metric that satisfies Property i), we

may derive a contradiction. Denote by , the measure
with a unit mass in the point and let . By

-continuity, there exists such that
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. Let be such that and .
Then we have that

Which is a contradiction, and, hence, the proposition holds.
It is important to point out that none of the above [i.e., nei-

ther (3) nor (4)] is a -continuous metric. In particular, the
metric in (4) is impervious to spectral lines as only the abso-
lutely continuous part of the spectra plays any role. Similarly,
neither the metric in (2) nor the one in (3) can localize distri-
butions because they are not -continuous. Thus, in this
paper, we follow a line of reasoning analogous to the axiomatic
framework of the Chentsov theorem, but for power spectra, re-
quiring a metric to satisfy Axioms i)–iv).

IV. THE MONGE-KANTOROVICH PROBLEM

A natural class of metrics on measures are transport metrics
based on the ideas of Monge and Kantorovich. The Monge-Kan-
torovich distance represents a cost of moving a nonnegative
measure to another nonnegative measure

, given that there is an associated cost of moving
mass from the point to the point . The theory may be formu-
lated for rather general spaces , but in this paper we restrict
our attention to compact metric spaces and, in particular, .
Every possible way of moving the measure to corre-
sponds to a transference plan , which satisfies

or more rigorously, that

(5)

whenever are measurable. Such a plan exists only if
the measures and have the same mass, i.e.,

. Denote by the set of all such transference
plans, i.e.,

To each such transference plan, the associated cost is

and consequently, the minimal transportation cost is

(6)

The optimal transportation problem admits a dual formu-
lation, referred to as the Kantorovich duality, which we state
below without a proof. For a derivation and an insightful
exposition we refer the reader to [32, p. 19].

Theorem 3: Let be a lower semicontinous (cost) function,
let

and let

Then

A rather simple consequence is the following lemma.
Lemma 4: Let be a lower semicontinous (cost) function

with for . Then is contractive with
respect to .

Proof: Contractiveness of follows from the dual rep-
resentation. Any pair satisfies ,
and, hence

Monge-Kantorovich distances are not metrics, in general, but
they readily give rise to a class of the so-called Wasserstein met-
rics as explained next.

Theorem 5: Assume that the (cost) function is of the
form where is a metric and .
Then the Wasserstein distance

is a metric on the subspace of with fixed mass and
metrizes the topology.

Proof: See [32, Ch. 7]. Note that since is compact, the
topology on coincides with the weak topology.

V. METRICS BASED ON TRANSPORTATION

The Monge-Kantorovich theory deals with measures of equal
mass. As we have just seen, it provides metrics that have some of
the properties that we seek to satisfy. The purpose of this section
is to develop a metric based on similar principles, that applies
to measures of possibly unequal mass.

Given two nonnegative measures and on , we pos-
tulate that these are perturbations of two other measures
and , respectively, which have equal mass. Then, the cost of
transporting and to one another can be thought of as
the cost of transporting and to one another plus the size
of the respective perturbations. Thus we define

(7)
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where is a suitable parameter that weighs the relative contri-
bution of perturbation and transportation. Define

(8)

where is the element in the equivalence class
which belongs to . The main result of the section is the
following theorem.

Theorem 6: Let and defined as in (8), where
. Then

is a metric on which satisfies Axiom i)–iv).
The proof uses the fact that (7) has an equivalent formulation

as a transportation problem, and a corresponding dual stated
below.

Theorem 7: Let be a lower semicontinuous (cost) function,
let

and let

Then

(9)

Remark 8: Definition (7) does not provide a direct way to
compute , whereas the dual formulation in The-
orem 7 is amenable to numerical implementation. Indeed, (9)
is a linear optimization problem which can be computed using
standard methods.

Proof: The problem (7) can be thought of as a transporta-
tion problem on the set , where a mass is added at

as needed to normalize the measures so that they have equal
mass, e.g.

for some . Accordingly, the (cost)
function is modified as follows:

for ,
for ,
for ,
for .

(10)

First we prove that

hence is independent of , and then we conclude
the proof by showing that

(11)

According to Theorem 3, is equal to the
supremum of

subject to

(12)

(13)

(14)

(15)

Our first claim now follows by showing that there is no added
restriction imposed by requiring that . In-
deed, is essentially identical to the set

with extended to have support at as well. To this
end, let be an arbitrary pair of functions satisfying
(12)–(15). Since additive scaling of does not change
the constraints nor the value of , we may assume that

. There are two cases that we need to consider. If
, then define

,

and if , then define

.

In both cases, we have that as well
as that the pair satisfies (12)–(15). In the second
case, the constraint (14) is not violated; im-
plies that , and hence

. Note that (13) implies that .
Thus, in both cases, from an arbitrary pair , we have
constructed a pair for which the constraints (12)–(15)
hold, holds, and the value of has
not decreased. Therefore we may without loss of generality let

.
It remains to show that . We

start by showing that . Let
and let measures and be defined via
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for . Then for any transference plan we have that

To see this, note that is positive and, hence, that
. Therefore,

always holds. To show that the reverse in-
equality also holds let be two nonnegative measures
with . By introducing ,

and using the dual formulation we get

Here, we use the fact that
. Since the above inequality

holds for any measures we get the reversed inequality
, and hence we conclude that

.
The final step to proving Theorem 6 will be provided by the

following lemma.
Lemma 9: Let be a function of . Then for any

with , is contractive on with
respect to .

Proof: Note that

and denote

From this it follows that

where the subscript specifies the measures used in the definition
of the dual functional.

Now let . Then

and by integrating with respect to over , we
arrive at

Furthermore, it is immediate that and
implies that and that , and, hence,

follows. Finally

We now recap the proof of our main theorem.
Proof: [Proof of theorem 6]: From (11), can be

viewed as the cost of a transportation problem. Since the
associated cost function from (10) is of the form , where

is a metric, Axiom i) follows from Theorem 5. Axiom iv)
follows by noting that if a sequence of measures converges
to in , then in particular . Therefore, for
any , it readily follows that

converges to in , and, hence, Theorem 5 ensures
-continuity of . From the above formulation, Axiom

ii) follows from Lemma 4. Finally Axiom iii) follows from
Lemma 9.

Remark 10: It is interesting to note that for the case

where the Lipschitz norm.
Furthermore, in general, for any

Remark 11: The transportation problem has indeed some
very nice properties that relate to the -continuity of the
corresponding distance metrics. In particular, smoothness with
respect to translations and small deformations is an intrinsic
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Fig. 1. Stochastic process � in time and frequency domain for � � �, 1.2,
and 2.

property. For this reason, it has been used in conjunction with
other notions of distance, in a similar fashion as in the current
paper, to link density functions of unequal mass. In particular,
Benamou and Brenier [6] have introduced a mixed /Wasser-
stein optimal mapping to link such density functions, while in
other relevant literature, Caffarelli and McCann [10] and more
recently, Figalli [13] study the transportation of a portion of two
unequal masses onto each other.

VI. EXAMPLES

We present two examples that highlight the relevance of the
proposed metrics in spectral analysis. The first example com-
pares how different distance measures perform on spectra which
contain spectral lines. The second compares how these measures
distinguish voiced sounds of different speakers. The distance
measures we consider, besides the transportation distance (here

), are the prediction metric and the Itakura-Saito distance. In
both examples the time-series are normalized to have the same
variance.

Example 12: We consider a random process
which consists of a sinusoidal component

and a zero-mean, unit-variance, white-noise component .
Here, is taken as a constant, whereas is assumed random,
independent of , and uniformly distributed on .
Fig. 1 shows three samples of such a random process for
respective values of , along with their respective
power spectra. Based on a set of 500 independent simulations,
Table I shows the average distance of the respective power
spectra when measured using i) the transport distance, ii) the
prediction distance [15], and iii) the Itakura-Saito distance (see,
e.g., [18]). Comparison of these values reveals that only the
transportation-based metric can reliably distinguish between
spectral lines.

The schematic in Fig. 2 compares the relative distances in
these three cases with the smallest value normalized to one.
The respective distances for the case of the prediction metric
are relatively insensitive to the actual location of the spectral

TABLE I
COMPARISON OF DISTANCE MEASURES ON SPECTRAL LINES � NOISE

Fig. 2. Relative distances between line spectra.

line, as in the limit of a long observation record all three dis-
tances ought to be equal to one. Recall that the prediction metric
does not detect deterministic components. On the other hand the
Itakura-Saito distance gives a rather distorted view of reality. In
the transportation metric, the respective distances are consistent
with “physical” location of the spectral lines. Further, the con-
sistency in the ability to discriminate between such spectra is
dramatically different in the three cases. Consider the propor-
tion of the simulations for which the distance between the first
two spectra ( , 1.2) is smaller than any of the other dis-
tances ( , 2 or , 2). For the transport distance in all
500 iterations the distance between the first two power spectra
with lines at {1, 1.2} was smaller than the distance between the
other two possibilities. On the other hand, the corresponding
percentages for the prediction distance and for the Itakura-Saito
distance were 34.4% and 33.8%, respectively. Thus, the trans-
portation correctly identifies the two spectra that are intuitively
closest (i.e., having spectral lines closest to each other), whereas
the other distance measures succeed about one third of the times
(practically a random pick).

To be fair, neither the prediction metric nor the Itakura-Saito
distance were designed, or claimed, to have such discrimina-
tion capabilities. As the sample size tends to infinity power
spectra computed via the periodogram method converge to the
true spectrum in , and since the transportation distance is

-continuous, transportation distances converge to the true
values. On the other hand, this is not the case for either of the
other two distances.

Example 13: Fig. 3 (left side column) shows time samples
corresponding to the phoneme “a” spoken by three individuals,
speakers A (Alice), B (Bob), and C (Colin), respectively.
Speakers B and C were chosen to be males whereas speaker
A was chosen to be a female and, accordingly, the dominant
formant of the first speaker has higher pitch than the other two,
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Fig. 3. Phoneme “a” for Alice, Bob, and Colin (top to bottom) in time and
frequency domain.

Fig. 4. Relative distances between spectra of the voiced sounds in Fig. 3.

as seen in the estimated power spectra shown in Fig. 3 (right
hand side column). The distance between these three power
spectra in the transportation metric, the prediction metric, and
the Itakura-Saito distance are compared in Fig. 4 as before. The
shortest distance in all three cases is normalized to one.

It is seen that all three distance measures are consistent in that
the power spectrum corresponding to Bob is always between
that of Alice and Colin. However, the respective distances are
highly skewed, especially when it comes to the Itakura-Saito
distance.

In the second example, all three distance measures appear
to give qualitatively similar results. However, in general, visual
comparison of two power spectra appears to be more easily cor-
related with respective distances in the transportation metric.
This is rather evident in the first example and the reasons are
traceable to the physical interpretation of the metric with regard
to mass transfer. Moreover, we should point out that in neither
example did the Itakura-Saito distance respect the triangular in-
equality (and of course, it has never been claimed to satisfy this
metric property).

VII. CONCLUDING REMARKS

Our goal has been to identify natural notions of distance for
quantitative spectral analysis. Historically, there has been a va-
riety of options [18], [19], [26], [27] which were used to measure
distortion, and which were motivated by their perceptive quali-
ties, e.g., see [4] and [30]. However, in order to quantify spectral
uncertainty, the relevant metrics ought to allow localization of

power spectra based on estimated statistics (i.e., being
continuous). At the same time, these metrics ought to share cer-
tain natural properties with regard to how noise affects distance
between power spectra. In the present paper, we have presented
an axiomatic framework that attempts to capture these intuitive
notions and we have developed a family of metrics that satisfy
the stated requirements.

While there are many possibilities for developing -con-
tinuous metrics as suggested, we have chosen to base our ap-
proach on the concept of transportation. The reason is that the
resulting metrics have certain additional properties which re-
late to deformations of spectra and smoothness with respect to
translation. More specifically, from experience, it appears that
geodesics (in, e.g., the Wasserstein 2-metric) preserve “lumpi-
ness.” A consequence is that when linking power spectra of two
similar speech sounds via geodesics of the metric, the corre-
sponding formants often seem to be “matched” and the power
between those to transfer in a consistent manner. Such a prop-
erty appears highly desirable in speech morphing (cf., see [21]).
Thus, it will be interesting to expand the set of axioms to include
such desirable properties in a more formal way. Such an exercise
may in turn narrow down the possible choices of metrics and
provide further justification for transportation-based metrics.

Finally, we wish to comment on the need for analogous met-
rics for comparing multivariable spectra. The ability to localize
matricial power spectra is of great significance in system identi-
fication, as for instance, in identification based on joint statistics
of the input and output processes of a system (cf. [17]).
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