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On robustness of `1-regularization methods for spectral estimation

Data: y = Axtrue + noise

Recovery: xest = arg min ‖x‖1

subject to ‖Ax− y‖2 ≤ error

Distance between xtrue and xest?

A incoherent: Robust recovery (`2) by
Candès, Donoho, Tao, Tropp, etal.

A coherent:

Typical in spectral estimation.

Robust recovery (`2) impossible.

Robust recovery in Transportation
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Spectral estimation
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yk =
∫
T eiθk dX (θ)

dµ(θ) = E(|dX (θ)|2)

Applications:

Speech analysis

Medical diagnostics

Radar/Sonar

Communications

System identification

Estimation Methods:

Periodogram, Correlogram

Burg, THREE (Maximum entropy)

Capon

MUSIC, ESPRIT

Sparse methods
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Problem setting
Discrete-time signal yn ∈ C, n ∈ Z. Sinusoids in noise:

yn =
L∑
`=1

x`einλ` + wn, for n = 0, 1 . . . ,N − 1

λ` ∈ [−π, π] frequency

x` ∈ C magnitude and phase

wn ∈ C error/noise.

Typically the frequency grid is discretized resulting in the linear system

y = Ax + w (1)

columns of A ∈ CN×K form a normalized overcomplete Fourier basis

a(θk ) =
1√
N

(
1, eiθk , . . . , ei(N−1)θk

)T

for Ω = {θ1, θ2, . . . , θK}. Here x ∈ CK , w ∈ CN , N < K .
(1) is underdetermined and to single out a unique solution, the use `1

regularization has recently been very popular (Chen, Donoho, 1998).

Johan Karlsson 5 Conference on Decision and Control, Los Angeles, December 2014



Sparse methods

Find the most sparse solution: a combinatorial problem.

Use `1-norm as surrogate for the cardinality:

arg min
x∈CK

‖x‖1 subject to ‖y− Ax‖2 ≤ ε. (2)

Empirically: good recovery of the true xtrue.

Theorem 1: (Candes, Wakin, 2008) Assume that for δ2s <
√

2− 1, the
inequality

(1− δ2s)‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + δ2s)‖x‖2
2 (RIP)

holds for all 2s−sparse x . Let y = Axtrue + w where xtrue is s-sparse and
‖w‖2 ≤ ε, then the minimizer xest of (2) satisfy

‖xtrue − xest‖2 ≤ C(δ2s)ε. �

In high resolution spectral estimation, typically
δ2 ≥ 0.95 >

√
2− 1 ≈ 0.41.

A highly coherent⇒ standard sparse results not applicable.

What can we say in this case?
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Sparse methods
Example:

One sinusoid y := a(0.1) + w
‖w‖2 = ε = 10%
Results in relative `2-error of 130%.

A is highly coherent: robust recovery in the sense of `2-norm is not possible.
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Figure: Here SNR:= ‖Ax‖2/‖w‖2 = 10, N = 100, and K = 1000.
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Motivating Example

Consider the example where xtrue = e(λ) has support in only one point λ.
The signal is given by

y = Axtrue + w = a(λ) + w, where ‖w‖2 ≤ ε,

and let xest be the recovered solution from (2):

xest = arg min ‖x‖1 subject to ‖Ax− y‖2 ≤ ε.

Note that

ε ≥ ‖Axest − y‖2 ≥ |a(λ)∗(Axest − y)|

=

∣∣∣∣ a(λ)∗a(λ)︸ ︷︷ ︸
=1=‖xtrue‖1

−
∑
θ∈Ω

xest(θ)a(λ)∗a(θ) + a(λ)∗w︸ ︷︷ ︸
|·|≤ε

∣∣∣∣
≥ ‖xtrue‖1 −

∑
θ∈Ω

|xest(θ)||a(λ)∗a(θ)| − ε

=
∑
θ∈Ω

|xest(θ)|(1− |a(λ)∗a(θ)|)︸ ︷︷ ︸
“mass” transport

+ ‖xtrue‖1 − ‖xest‖1︸ ︷︷ ︸
“mass” deviation

−ε.
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Motivating Example

2ε ≥
∑
θ∈Ω

|xest(θ)|(1− |a(λ)∗a(θ)|)︸ ︷︷ ︸
“mass” transport

+ ‖xtrue‖1 − ‖xest‖1︸ ︷︷ ︸
“mass” deviation

.

Term 1: Transportation cost where the
cost of transporting from θ to λ is

c(λ, θ) = 1− |a(λ)∗a(θ)|.

Term 2: Deviation in the total mass.
By optimality ‖xtrue‖1 − ‖xest‖1 ≥ 0.

Example:

xtrue = e(λ) and xest = 0.2e(θ1) + 0.7e(θ2)

⇒ 2ε ≥ 0.2c(λ, θ1) + 0.7c(λ, θ2) + 0.1.
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Transportation distances

Transportation cost (Monge 1781, Kantorovich 1942):

TN(ρ0,ρ1) := min
∑
θ∈Ω

∑
ω∈Ω

cN(θ, ω)M(θ, ω)

subject to
∑
ω∈Ω

M(θ, ω) = ρ0(θ) and
∑
θ∈Ω

M(θ, ω) = ρ1(ω)

M(θ, ω) ≥ 0, θ, ω ∈ Ω

Relaxed transportation cost allowing for different masses
(K., Georgiou, Takyar, 2009):

T̃N(x0, x1) := inf
‖ρ0‖1=‖ρ1‖1

TN(ρ0,ρ1) +
1∑

j=0

‖|xj | − ρj‖1


where |x| := (|x(j)|)N

j=1 denotes element-wise absolute value.
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Worst case bounds
General case

xtrue =
∑
λ∈Λ

αλe(λ), supp(xtrue) = Λ ⊂ Ω

Definition 2: Let A be a dictionary with index set Ω and let Λ ⊂ Ω. Then we
define

µΛ := max
θ∈Ω

(∑
λ∈Λ

|a(λ)∗a(θ)| −max
λ∈Λ
|a(λ)∗a(θ)|

)
,

which we denote by the cumulative intercoherence. �

µΛ: quantifies sparsity and separateness of
the support Λ .

Proposition 3:

µΛ ≤
(|Λ| − 1)π

N∆(Λ)

where

∆(Λ) = min
λ0,λ1∈Λ,λ0 6=λ1

|λ0 − λ1|.
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Figure: Intercoherence for
L ∈ {2, 3, 10} and Λ
consisting of L equispaced
frequencies with distance θ.
Here N = 100.
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Worst case bounds

We will derive the bound based on the following properties

3a) xtrue has support Λ,

3b) ‖xest‖1 ≤ ‖xtrue‖1, (3)

3c) ‖Axest − Axtrue‖2 ≤ 2ε.

They hold for xest obtained from

arg min
x∈CK

‖x‖1 subject to ‖y− Ax‖2 ≤ ε,

Theorem 4: Let xtrue ∈ CK×1 be a vector with support Λ, and let w ∈ CK×1

with ‖w‖2 ≤ ε. Then the optimal solution xest satisfies

T̃ (xest, xtrue) ≤ 6
(
ε
√

L(1 + µΛ) + µΛ‖xtrue‖1

)
,

where µΛ is given by Definition 2 and L = |Λ|. �
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Error bounds with given confidence level

If noise ≥ signal, worst case bounds useless.
If w nearly orthogonal to the columns of A, i.e., δ � 1 and

|a(θ)∗w| ≤ δ‖w‖2 for all θ ∈ [−π, π] = T. (4)

In addition assume ‖w‖2 = ε and

‖Axest − Axtrue −w‖2 ≤ ε.

Then it follows that

‖Axest − Axtrue‖2
2 ≤ 2|w∗(Axest − Axtrue)|
≤ 2δε(‖xest‖1 + ‖xtrue‖1)

≤ 4δε‖xtrue‖1.

Theorem 5: Let xtrue ∈ CK×1 be a vector with support Λ, and let w ∈ CK×1

with ‖w‖2 = ε and which satisfies (4). Then the optimal solution xest satisfies

T̃ (xest, xtrue) ≤ 6
(√

2δε‖xtrue‖1L(1 + µΛ) + µΛ‖xtrue‖1

)
.
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Error bounds with given confidence level

When is the near orthogonality assumption justified?

|a(θ)∗w| ≤ δ‖w‖2 for all θ
⇔

w
‖w‖2

/∈B√
(1−δ)/2(a(θ)eiφ : θ, φ ∈ T) ∩ SN−1

Volume of tube can be bounded based on
Neiman’s inequality
(Johnstone, Siegmund, 1989). −1
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Proposition 6: Let δ ∈ (0, 1) be given and let w ∈ CN be a random vector
that is complex Gaussian with zero mean and unit variance. Then

Prob
(

max
0≤θ≤2π

|a(θ)∗w| ≥ δ‖w‖2

)
≤ (1− δ)N−3/2

(
1 + δ

e2

√
6

N3/2
)
.

�

⇒ max0≤θ≤2π
|a(θ)∗w|
‖w‖2

→ 0 as N →∞ in probability.
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Spectral estimation based on `1 regularization

Let N ∈ N and let the signal be a sum of sinusoids in noise

yn =
L∑

λ∈Λ

einλx(λ) + wn, for n = 0, . . . ,N − 1

where x(λ) ∈ C for λ ∈ Λ = {λ1, . . . , λL} ⊂ ΩK (N), and let wn ∈ CN(0, σ2) be
white circular complex-valued Gaussian noise.
Let

xN
est = arg min

xN∈CK
‖xN‖1 subject to ‖yN − ANxN‖2 ≤ ε = ‖wN‖,

AN ∈ CK (N)×N , xN ∈ CK (N), yN ∈ CN ,wN ∈ CN are defines as before.
Then

T̃N(xN
est, xtrue)→ 0 in probability, as N →∞.
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Related work

Candès and Fernandez-Grada (2012) consider a similar problem:
If ∆(Λ) ≥ 8π

N then their bound is

‖xtrue − xest‖1 ≤ C
(

K
N

)2

ε.

(+) Transparant condition on Λ.
(+) Exact recovery in the noiseless case.
(-) Error bound in noisy case grows quickly as K/N increase.

Tang, Bhaskar, Recht (2013) use atomic norm minimization:
(+) Convergence in probability in the weak topology.
(-) No explicit bounds for finite N.
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Conclusions

Conclusions

Standard `2 distance is not appropriate for quantifying uncertainty in
high-resolution spectral estimation based on `1 regularization.

Framework for spectral estimation with uncertainty bounds based on
transportation distance.

Uncertainty bounds, both worst-case and bounds that hold with a
guaranteed probability defined.

The latter bound go to 0 as number of data go to∞ (in probability).

Thank you for your attention!
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