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Robust recovery for super-resolution methods via optimal transport

Let xtrue be sparse.

Data: yest = Axtrue + noise

Recovery: xest = arg min ‖x‖1

subject to ‖Ax− y‖2 ≤ error

Distance between xtrue and xest?

A incoherent: Robust recovery (`2) by
Candès, Donoho, Tao, Tropp, etal.

A coherent or integral operator?

Typical in spectral estimation, radar, etc.

Robust recovery (`2) impossible.

For xtrue with sparse separated support:
Error bounds in Transportation distance

xest
w∗
−−→ xtrue in prob. as #data→∞.
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Sparse methods

Model (discrete setting)

y =
K∑

k=1

ak xk + w = Ax + w

Measurements: y ∈ CN

Steering matrix: A ∈ CN×K typically N � K
Matrix columns (dictionary): ak ∈ CN , for k = 1, . . . ,K assume ‖ak‖2 = 1
Noise: w ∈ CN assume ‖w‖2 ≤ ε
Sought sparse vector: x ∈ CK

Sparse recovery problem

Given measurement y and ε, find sparsest x:

min #{k | xk 6= 0} subject to‖y− Ax‖2 ≤ ε

Combinatorial problem in general. Approach: Use a convex surrogate problem.

KTH Royal Institute of Technology On robustness of Super resolution methods MTNS, Minneaplis, 2016 4 / 20



Sparse methods

Find sparsest solution: a combinatorial problem.
Use `1-norm as surrogate for the cardinality:

arg min
x∈CK

‖x‖1 subject to ‖y− Ax‖2 ≤ ε. (1)

Empirically: good recovery of the true xtrue.

Theorem (Candés, Wakin, 2008)

Assume that for δ2s <
√

2− 1, the inequality

(1− δ2s)‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + δ2s)‖x‖2
2 (RIP)

holds for all 2s−sparse x. Let y = Axtrue + w where xtrue is s-sparse and ‖w‖2 ≤ ε, then
the minimizer xest of (1) satisfy

‖xtrue − xest‖2 ≤ C(δ2s)ε. �

Useful bound in several case: e.g., random matrix A.
Coherency of A: δ2 = maxk,` |a∗k a`|
A highly coherent⇒ robustness results not applicable.
What can we say in this case?
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Example: Spectral estimation

Discrete-time signal yn ∈ C, n ∈ Z. Sinusoids in noise:

yn =
L∑
`=1

x`einλ` + wn, for n = 0, 1 . . . ,N − 1

λ` ∈ [−π, π] frequency, x` ∈ C magnitude and phase, wn ∈ C error/noise.

Discretize frequency grid =⇒ linear system

y = Ax + w (2)

columns of A ∈ CN×K overcomplete Fourier basis:

a(θk ) =
1√
N

(
1, eiθk , . . . , ei(N−1)θk

)T

for Ω = {θ1, θ2, . . . , θK}. Here x ∈ CK , w ∈ CN , N < K .

(9) is underdetermined. `1 regularization popular to single out a unique solution.
(Chen, Donoho, 1998)
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Example: Spectral estimation

Example:

One sinusoid y := a(0.1) + w
‖w‖2 = ε = 10%

Results in relative `2-error of 130%.

A is highly coherent: robust recovery in the sense of `2-norm is not possible.
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Figure: Here SNR:= ‖Ax‖2/‖w‖2 = 10, N = 100, and K = 1000.

Note: In high resolution spectral estimation,
typically δ2 ≥ 0.95 >

√
2− 1 ≈ 0.41⇒ (RIP) condition not applicable.
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Related work on Spectral estimation problem

Candès and Fernandez-Grada (2014, Comm. on Pure and Appl. Math.):
Assuiming support of xtrue is 4K/N separated and ‖A∗w‖1 ≤ ε, then

‖xtrue − xest‖1 ≤ C
K
N2 ε.

(+) Transparant condition on separation.
(+) Exact recovery in the noiseless case.
(-) Error bound in noisy case grows quickly as K/N increase.

K., Ning (2014, IEEE CDC):
(+) Error bounds on magnitude in terms of transportation distance
(+) Convergence in probability of magnitude in weak topology
(-) Only magnitude result
(-) Less transparent separation condition.

Tang, Bhaskar, Recht (2015, IEEE TIT) use atomic norm minimization:
(+) Convergence in probability in the weak topology.
(-) No explicit bounds for finite N.
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Sparse recovery with a continuous dictionary

In many cases the model is given by the integral operator A : M(Ω)→ CN :

Ax :=

∫
ω∈Ω

a(ω)dx(ω).

x ∈M(Ω): set of bounded complex measures on Ω ⊂ Rd .
Inverse problem: find a sparse measure x with consistent with the linear system

y = Ax + w.

Continuous dictionary A = {a(ω), ω ∈ Ω} ⊂ CN .

Frequency estimation, spectral estimation, direction of arrival:

[a(ω)]n =
1√
N

ei(n−1)ω, n = 1 . . .N, ω ∈ [0, 2π).

d-dimensional frequency estimation, e.g., synthetic aperture radar (SAR):

[a(ω)]n =
1√
N

eikT
n ω, kn ∈ Zd , n = 1 . . .N, ω ∈ [0, 2π)d .

Delay estimation, e.g., radar and sonar:

[a(ω)]n = s(ω − tn), n = 1 . . .N, ω ∈ [ωmin, ωmax],

and where s(t) is the probing waveform and t1, . . . , tN is a set of measuring points.
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Sparse recovery with a continuous dictionary

Measurements:
y = Ax + w =

∫
ω∈Ω

a(ω)dx(ω) + w,

where y,w ∈ RN , and ‖w‖2 ≤ ε.

Reconstruction:

arg min
x∈M(Ω)

‖x‖1 subject to ‖y− Ax‖2 ≤ ε.

In this setting ‖x‖1 =
∫
ω∈Ω

d |x|(ω) is the total variation of the measure.

What can be said about robustness of this problem?
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Motivating Example

To illustrate the principle, assume all measures are nonnegative,1and assume
dxtrue = δλ(ω)dω is a measure with support in only one point λ.
The measurement is given by

y = Axtrue + w = a(λ) + w, where ‖w‖2 ≤ ε.

xest recovered solution from

xest = arg min
x∈M+(Ω)

‖x‖1 subject to ‖Ax− y‖2 ≤ ε.

Note that

ε ≥ ‖Axest − y‖2 ≥ |a(λ)∗(Axest − y)|

=

∣∣∣∣ a(λ)∗a(λ)︸ ︷︷ ︸
=1=‖xtrue‖1

−
∫
ω∈Ω

a(λ)∗a(ω)dxest(ω) + a(λ)∗w︸ ︷︷ ︸
|·|≤ε

∣∣∣∣
≥ ‖xtrue‖1 −

∫
ω∈Ω

Re(a(λ)∗a(ω))dxest(ω)− ε

=

∫
ω∈Ω

(1−Re(a(λ)∗a(ω)))dxest(ω)︸ ︷︷ ︸
“mass” transport

+ ‖xtrue‖1 − ‖xest‖1︸ ︷︷ ︸
“mass” deviation

−ε.

1Problem can be lifted to non-negative measures x̃(τ, ω) = |x(ω)|δ(τ − arg(x(ω))) on Ω× [−π, π], where
arg(x(ω)) is the phase in the polar representation dx(ω) = ei arg(x(ω))d|x(ω)|.
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Transportation distances

Transportation cost (Monge 1781, Kantorovich 1942):

T (x0, x1) := min
M∈M+(Ω×Ω)

∫
θ,ω∈Ω

c(θ, ω)dM(θ, ω)

subject to
∫
ω∈Ω

dM(θ, ω) = dx0(θ)∫
θ∈Ω

dM(θ, ω) = dx1(ω)

M(θ, ω) ≥ 0, θ, ω ∈ Ω

Transportation plan (M)
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Relaxed transportation cost allowing for different masses
(K., Georgiou, Takyar, 2009):

T̃ (x0, x1) := min
‖ρ0‖1=‖ρ1‖1

T (ρ0,ρ1) +
1∑

j=0

‖xj − ρj‖1

 .
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Motivating Example

2ε ≥
∫
ω∈Ω

(1−Re(a(λ)∗a(ω)))dxest(ω)︸ ︷︷ ︸
“mass” transport

+ ‖xtrue‖1 − ‖xest‖1︸ ︷︷ ︸
“mass” deviation

.

Term 1: Transportation cost of transporting unit
mass from ω to λ

c(λ, θ) = 1−Re(a(λ)∗a(ω)).

Term 2: Deviation in the total mass.
By optimality ‖xtrue‖1 − ‖xest‖1 ≥ 0.

Example:

xtrue = e(λ) and xest = 0.2e(ω1) + 0.7e(ω2)

⇒ 2ε ≥ 0.2c(λ, ω1) + 0.7c(λ, ω2) + 0.1.
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Example: Spectral estimation

Example:

One sinusoid y := a(0.1) + w
‖w‖2 = ε = 10%

Results in relative `2-error of 130%.

A is highly coherent: robust recovery in the sense of `2-norm is not possible.
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Figure: Here SNR:= ‖Ax‖2/‖w‖2 = 10, N = 100, and K = 1000.
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Worst case bounds

General case: dxtrue =
∑
λ∈Λ

xλδλ(ω)dω, supp(xtrue) = Λ ⊂ Ω

Definition
Let A be a dictionary with index set Ω and let Λ ⊂ Ω. Define

µΛ := max
θ∈Ω

(∑
λ∈Λ

|a(λ)∗a(θ)| −max
λ∈Λ
|a(λ)∗a(θ)|

)
,

which we denote by the cumulative intercoherence.

µΛ: quantifies sparsity and separateness of Λ .

Proposition (Spectral estimation)

µΛ ≤
(|Λ| − 1)π

N∆(Λ)
, where

∆(Λ) = min
λ0,λ1∈Λ,λ0 6=λ1

|λ0 − λ1|.
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|Λ| = L where L ∈ {2, 3, 10}.
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Worst case bounds

Let y = Axtrue + w and take xest to be the minimizer of

arg min
x∈M(Ω)

‖x‖1 subject to ‖y− Ax‖2 ≤ ε,

We will derive the bound based on the following properties

3a) xtrue has support Λ,

3b) ‖xest‖1 ≤ ‖xtrue‖1, (3)

3c) ‖Axest − Axtrue‖2 ≤ 2ε.

Theorem

Let xtrue ∈ CK×1 be a vector with support Λ, and let ‖w‖2 ≤ ε. Then the optimal solution
xest satisfies

T̃ (x̃est, x̃true) ≤ 6
(
ε
√
|Λ|(1 + µΛ) + µΛ‖xtrue‖1

)
,

where x̃(τ, ω) = |x(ω)|δ(τ − arg(x(ω))) on Ω× [−π, π], where arg(x(ω)) is the phase
in the polar representation dx(ω) = ei arg(x(ω))d |x(ω)|.
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Error bounds with given confidence level

If noise ≥ signal, worst case bounds useless.
If w nearly orthogonal to all dictionary elements of A, i.e., κ� 1 and

|a(ω)∗w| ≤ κ‖w‖2 for all ω ∈ Ω. (4)

In addition assume ‖w‖2 = ε and

‖Axest − Axtrue −w‖2 ≤ ε.

Then it follows that

‖Axest − Axtrue‖2
2 ≤ 2|w∗A(xest − xtrue)|
≤ 2κε(‖xest‖1 + ‖xtrue‖1)

≤ 4κε‖xtrue‖1.

Theorem

Let xtrue ∈ CK×1 be a vector with support Λ, and let ‖w‖2 = ε which satisfies (4). Then
the optimal solution xest satisfies

T̃ (x̃est, x̃true) ≤ 6
(√

2κε‖xtrue‖1|Λ|(1 + µΛ) + µΛ‖xtrue‖1

)
.
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Error bounds with given confidence level (spectral estimation)

When is the near orthogonality assumption justified?

For spectral estimation:

Proposition (K., Ning, 2014)

Let κ ∈ (0, 1) be given and let w ∈ CN be a random vector that is complex Gaussian
with zero mean and unit variance. Then

Prob
(

max
0≤θ≤2π

|a(θ)∗w| ≥ κ‖w‖2

)
≤ (1− δ)N−3/2

(
1 + κ

e2

√
6

N3/2
)
.

⇒ max0≤θ≤2π
|a(θ)∗w|
‖w‖2

→ 0 as N →∞ in probability.
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Error bounds with given confidence level (spectral estimation)

Let N ∈ N and let the signal in noise

yn =
L∑

λ∈Λ

einλx(λ) + wn, for n = 0, . . . ,N − 1

where wn ∈ CN(0, σ2) is white Gaussian noise.
Let

xN
est = arg min

xN∈M(Ω)
‖xN‖1 subject to ‖yN − ANxN‖2 ≤ εN = ‖wN‖,

Then
T̃N(x̃N

est, x̃true)→ 0 in probability, as N →∞.

And hence
xN

est
w∗
−−→ xtrue in probability, as N →∞.
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Conclusions and further directions

Conclusions

Standard `2 distance is not appropriate for quantifying uncertainty in
high-resolution spectral estimation based on `1 regularization.

Framework for sparse recovery for structured dictionaries with error bounds based
on transportation distance.

Error bounds: worst-case (general) and bounds that hold with a guaranteed
probability (spectral estimation).

The latter bound go to 0 (in probability) as number of data points go to∞.

Further work

Extend confidence bounds to general dictionaries.

Extend framework to certain non-sparse cases, i.e. support regions.

Consider problems with, e.g., sparse gradient.

Towards a quantitative framework for comparing spectral estimation methods.

Thank you for your attention!
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