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Robust recovery for super-resolution methods via optimal transport

Let X be sparse.

Data: y = AXge + Noise
Recovery: Xes = argmin ||x||1
subject to ||Ax — y||» < error

Distance between Xy and Xes? 1

—0 Xie
A incoherent: Robust recovery (¢2) by — Xoq
Candeés, Donoho, Tao, Tropp, etal.

A coherent or integral operator?
@ Typical in spectral estimation, radar, etc.
@ Robust recovery (¢2) impossible.
@ For Xy With sparse separated support:
@ Error bounds in Transportation distance
@ Xest W—> Xrue iN Prob. as #data — oo.
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0 Sparse methods and spectral estimation
e Reconstruction with a continuous dictionary
e Motivating example and transportation distances

0 Worst case bounds

e Convergence in probability
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Sparse methods

Model (discrete setting)
K

V:Zakxk+W:AX+W
k=1

Measurements: yecV

Steering matrix: A c CNxK typically N <« K
Matrix columns (dictionary): ax € CV,fork =1,...,K assume |[ax/|> = 1
Noise: wech assume ||wljz < ¢
Sought sparse vector: x e CX

Sparse recovery problem
Given measurement y and e, find sparsest x:
min #{k | xx # 0} subjectto|ly — Ax|2 <€

Combinatorial problem in general. Approach: Use a convex surrogate problem.

KTH Royal Institute of Technology On robustness of Super resolution methods MTNS, Minneaplis, 2016



Sparse methods

@ Find sparsest solution: a combinatorial problem.
@ Use ¢1-norm as surrogate for the cardinality:

arg min ||x|[1+ subjectto ||y — Ax||2 < e. (1)
xeCck
Empirically: good recovery of the true Xie-

Theorem (Candés, Wakin, 2008)
Assume that for 5,5 < /2 — 1, the inequality

(1= b26)1X]13 < [[AX]}5 < (1 + 626) x5 (RIP)

holds for all 2s—sparse x. Lety = AXiue + W where Xu.. is s-sparse and |W||2 < ¢, then
the minimizer X.s. of (1) satisfy

”xtrue - xest”Z S C(62S)€~ O

4

@ Useful bound in several case: e.g., random matrix A.
@ Coherency of A: 6, = max ¢ |axae|

@ A highly coherent = robustness results not applicable.
@ What can we say in this case?
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Example: Spectral estimation

Discrete-time signal y, € C, n € Z. Sinusoids in noise:
L .
Yo=Y xe€™ +w, forn=01... N-1
=1

A¢ € [—m, «] frequency, x, € C magnitude and phase, w, € C error/noise.

Discretize frequency grid = linear system
y=Ax+w (2)

columns of A € C¥*¥ overcomplete Fourier basis:

(1,9’9", s e’(N_1)9k)T

VN
for Q = {6,60s,...,0k}. Herex e CX,w e CV, N < K.

a(ak) =

(9) is underdetermined. ¢; regularization popular to single out a unique solution.
(Chen, Donoho, 1998)
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Example: Spectral estimation

Example:
@ One sinusoidy :=a(0.1) + w
@ |w|2=e=10%
@ Results in relative £,-error of 130%.
A is highly coherent: robust recovery in the sense of /,-norm is not possible.
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Figure: Here SNR:= ||Ax||2/||w||2 = 10, N = 100, and K = 1000.

Note: In high resolution spectral estimation,
typically 6, > 0.95 > v/2 — 1 ~ 0.41 = (RIP) condition not applicable.
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Related work on Spectral estimation problem

@ Candés and Fernandez-Grada (2014, Comm. on Pure and Appl. Math.):
Assuiming support of Xq. is 4K /N separated and ||A*w/||1 < ¢, then

||xtme - xeslH1 < CN2
(+) Transparant condition on separation.
(+) Exact recovery in the noiseless case.
(-) Error bound in noisy case grows quickly as K/N increase.

@ K., Ning (2014, IEEE CDC):
(+) Error bounds on magnitude in terms of transportation distance
(+) Convergence in probability of magnitude in weak topology
(-) Only magnitude result
(-) Less transparent separation condition.

@ Tang, Bhaskar, Recht (2015, IEEE TIT) use atomic norm minimization:
(+) Convergence in probability in the weak topology.
(-) No explicit bounds for finite N.

KTH Royal Institute of Technology On robustness of Super resolution methods MTNS, Minneaplis, 2016 8/20



Sparse recovery with a continuous dictionary

In many cases the model is given by the integral operator A : 9(Q2) — cM:
Ax ::/ a(w)dx(w).
weN

X € M(Q): set of bounded complex measures on Q C RC.
Inverse problem: find a sparse measure x with consistent with the linear system

y=Ax+w.

Continuous dictionary A = {a(w),w € Q} c CN.
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Sparse recovery with a continuous dictionary

In many cases the model is given by the integral operator A : 9(Q2) — cM:
Ax ::/ a(w)dx(w).
weN

X € M(Q): set of bounded complex measures on Q C RC.
Inverse problem: find a sparse measure x with consistent with the linear system

y=Ax+w.
Continuous dictionary A = {a(w),w € Q} c CN.

@ Frequency estimation, spectral estimation, direction of arrival:
1

[aw), = We“”f”% n=1...N, wel0,2n).
@ d-dimensional frequency estimation, e.g., synthetic aperture radar (SAR):
[aW), = ﬁe’kh, kn€Zn=1...N, we[0,2r)".
@ Delay estimation, e.g., radar and sonar:
[AaW)]ln = Ss(w—1t), n=1...N, w € [Wnin,wWma],
and where s(t) is the probing waveform and ti, ..., ty is a set of measuring points.
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Sparse recovery with a continuous dictionary

@ Measurements:
y=AX+w= / a(w)dx(w) + w,

weR

wherey,w ¢ RV, and |w|2 < e.

@ Reconstruction:

rg min ||x i — AX|]> <e.
arg min [x]  subjectto [ly — Ax|» < ¢

In this setting ||x|1 = [

weq dX|(w) is the total variation of the measure.

What can be said about robustness of this problem?
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Motivating Example

To illustrate the principle, assume all measures are nonnegative,'and assume
dXme = 0x(w)dw is a measure with support in only one point A.

The measurement is given by
Yy = AXpe +W=2a(\) +w, where |w|z<e.
X.st recovered solution from

Xew = arg m|n ||x||1 subject to ||[AX —y||2 <.

"Problem can be lifted to non-negative measures X(r, w) = |x(w)|6(7— — arg(x(w))) on Q x [—m, «], where
arg(x(w)) is the phase in the polar representation dx(w) = & #9*(“)) g|x(w)].
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Motivating Example

To illustrate the principle, assume all measures are nonnegative,'and assume
dXme = 0x(w)dw is a measure with support in only one point A.

The measurement is given by
Yy = AXpe +W=2a(\) +w, where |w|z<e.
X.st recovered solution from

Xew = arg m|n ||x||1 subject to ||[AX —y||2 <.

Note that
e > (A% — Yo > [0 (A — )|
= ‘a()\)*a()\)f a(\)"a(w)dxea(w) + a(\)*w
N——— wen N——
=1=|Xrue |1 |-1<e
> Xl / Re(a(\) a(w))dxes(w) — ¢
weN

/69(1 — Re(a())"a(w)))dXes(w) + [Xuell1 — [[Xes|1 —e.

“mass” transport “mass” deviation

"Problem can be lifted to non-negative measures X(r, w) = |x(w)|6(7— — arg(x(w))) on Q x [—m, «], where
arg(x(w)) is the phase in the polar representation dx(w) = & #9*(“)) g|x(w)].
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Transportation distances

Transportation cost (Monge 1781, Kantorovich 1942):

Transportation plan (M)

TOo,x:) = _min A%memwa@ :
subject to dM(6, w) = dxo(0) -
wes . -
dM(0,w) = dxq(w) s
0eqQ s

M(0,w) >0, 6,weQ : M

Relaxed transportation cost allowing for different masses
(K., Georgiou, Takyar, 2009):

1

T(po, p1) + Y _ 1% — pll4
j=0

T(xo,x1) = min
lleoll1=Ile1ll1
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Motivating Example

2¢ > /GQ (1 —Ne(a(\) a(w)))dXesi(w) + [Xiruel1 — [Xestl1 -

“mass” transport “mass” deviation

@ Term 1: Transportation cost of transporting unit ..
mass from w to A o4
c(A,0) =1 —Re(a(N) a(w)). —

@ Term 2: Deviation in the total mass. Figure: Spectral estimation:

By optimality |[Xie|1 — [Xes[|1 > O. ¢(0,w) for N = 30.
Example: /0'1
Xiue = €(A) and Xy = 0.2e(w1) + 0.7€(w2) W
= 2¢ > 0.2¢(\,w1) + 0.7¢(\,w2) + 0.1. 0.2¢(X, wi)
_>+
A w1 w2
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Example: Spectral estimation

Example:
@ One sinusoidy :=a(0.1) +w
@ Wl =e=10%
@ Results in relative £;-error of 130%.

A is highly coherent: robust recovery in the sense of £>-norm is not possible.
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Figure: Here SNR:= ||Ax||2/||w||2 = 10, N = 100, and K = 1000.
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Worst case bounds

General case: AXire = Z X20x(w)dw,  supp(Xiwwe) = A C Q
AEN

Definition
Let A be a dictionary with index set 2 and let A C Q. Define

pa = max (Z Ia(A)*a(G)I—rpg%a(A)*a(9)|>,

which we denote by the cumulative intercoherence.

ua: quantifies sparsity and separateness of A .

Proposition (Spectral estimation)

(1Al = D)
<~ where
HA=TNAN)
A(N) = min Ao — Al
() AO,A1€A,>\0#>\1| 0 1l Figure: Intercoherence/AA:

|A| = Lwhere L € {2,3,10}.
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Worst case bounds

Lety = AXie + W and take Xy to be the minimizer of

rg min ||x i — Ax|]> <
arg min [}x|l; subjectto [ly — Ax|l> <,

We will derive the bound based on the following properties

3a) Xuue Nas support A,
3b)  [Xestll1 < [1Xurue [, )
3c) [|AXest — AXgrue|]2 < 2e.

Let Xye € C*" be a vector with support A, and let |w||2 < e. Then the optimal solution

Xese Satisfies

T(icstyilruc) <6 (5 V |A‘(1 = ,U«/\) aF ,Uf/\thruc||1) 5

where X(7,w) = |x(w)|é(7 — arg(x(w))) on Q x [—m, n], where arg(x(w)) is the phase
in the polar representation dx(w) = €'*9*“)d|x(w)|.
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Error bounds with given confidence level

If noise > signal, worst case bounds useless.
If w nearly orthogonal to all dictionary elements of A, i.e., x < 1 and

la(w)'w| < k|w|, forall weQ. (4)
In addition assume ||w||2 = e and
[[AXest — AXiue — W2 < €.
Then it follows that

HAxest - Axtrue”g 2|W*A(xest - xtrue)'
2re([[Xesl[1 + [[Xue 1)

4 kel Xiruel|1-

ININ TN

Let xie € C*' be a vector with support A, and let ||w||z = e which satisfies (4). Then

the optimal solution X satisfies

T (Rest, Kiue) < 6 (\/2ne||xtme||1 N+ n) + pA||xtme||1) .
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Error bounds with given confidence level (spectral estimation)

@ When is the near orthogonality assumption justified?
@ For spectral estimation:

Proposition (K., Ning, 2014)

Let s € (0,1) be given and letw € C be a random vector that is complex Gaussian
with zero mean and unit variance. Then

2
Wl > < (1 — 5N-3/2 € N32)
Prob (02;%# |a(f)"w| > n\|w||2> <(1-9) 1+ n\@N

[a(0)" w|
llwll2

= MaXo<o<on — 0 as N — oo in probability.
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Error bounds with given confidence level (spectral estimation)

Let N € N and let the signal in noise

L
yo=>_ €"x(\)+w, forn=0,...,N—1

AEA

where w, € CN(0, 0?) is white Gaussian noise.

Let
N . .
X. = arg min_ ||x subject to — Anx < en = ||wn]],
¢ ngealn(Q)H n|[1 subj lyn — AnXnll2 < en = ||Wal|
Then ;
Th(XY,, %we) — O in probability, as N — oo.
And hence

XY %5 Xewe  in probability, as N — co.
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Conclusions and further directions

Conclusions
@ Standard ¢, distance is not appropriate for quantifying uncertainty in
high-resolution spectral estimation based on ¢; regularization.

@ Framework for sparse recovery for structured dictionaries with error bounds based
on transportation distance.

@ Error bounds: worst-case (general) and bounds that hold with a guaranteed
probability (spectral estimation).

@ The latter bound go to 0 (in probability) as number of data points go to oco.

Further work
@ Extend confidence bounds to general dictionaries.
@ Extend framework to certain non-sparse cases, i.e. support regions.
@ Consider problems with, e.g., sparse gradient.
@ Towards a quantitative framework for comparing spectral estimation methods.
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Conclusions and further directions

Conclusions
@ Standard ¢, distance is not appropriate for quantifying uncertainty in
high-resolution spectral estimation based on ¢; regularization.

@ Framework for sparse recovery for structured dictionaries with error bounds based
on transportation distance.

@ Error bounds: worst-case (general) and bounds that hold with a guaranteed
probability (spectral estimation).

@ The latter bound go to 0 (in probability) as number of data points go to oco.

Further work

@ Extend confidence bounds to general dictionaries.

@ Extend framework to certain non-sparse cases, i.e. support regions.

@ Consider problems with, e.g., sparse gradient.

@ Towards a quantitative framework for comparing spectral estimation methods.

Thank you for your attention!
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