GMT seminar 5

1 The structure theorem

A (o-finite) purely n-unrectifiable set in R™™* has H"-measure zero projec-
tion onto almost every plane.

1.1 Purely unrectifiable sets

A set is purely n-unrectifiable if it contains no countably n-rectifiable subsets
of positive H™-measure.

1.1.1 Example from [1]

Consider the set P; consisting of four disks of radius 1/4, and consider the
lines ¢1 and ¢5:
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Iterate the construction to form Py D P, O ... D> P:
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Projections I1; and II_ on these lines yield measure zero sets.
Let v: [0,1] — R be a Lipschitz curve.
Let A=~"1(P). Then H*(TIL;(y(A))) =0so f'(t) L £y for ae. t € A.
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Similarly f’(t) L ¢_ for a.e. t € A. Hence A has measure zero so f(A) =
im f N P has measure zero. Hence P is purely unrectifiable.

Note that P projects both horizontally and vertcally onto the interval [0, 1].

1.2 Idea for a proof by induction

A proof by induction (based on Besicovitch’s theorem) due to Brian White
can be found in [2].

Construction: Consider a set X € R™t* with nonzero H* measure and with
positive projection onto a positive-measure set of k-planes. Define f: RF —
Rn-ﬁ-k by

f(z) = min{y € R": (z,y) € X}

where R" is ordered lexicographically. It turns out that this function (or a
similarly defined function after rotating R"*+*) is approximately differentiable
in a sense such that it restricts to a Lipschitz function on some set of positive
measure. Its graph then has positive-measure intersection with X.

Example: With n 4+ k = 3 and k£ = 2, this gives the "lower boundary” of the
set. With n+ k =3 and k = 1 it gives the lower-left point in each slice.

To prove that f is approximately differentiable one uses the structure theo-
rem for curves in R"*!, which can be established using induction.

2 Sets of locally finite perimeter

Remarkable that the simplest intuition for tangent space works for such
general sets: Zoom in until the set becomes a half-space.

2.1 De Giorgi’s theorem
2.1.1 Idea of statement

Let E have locally finite perimeter. Then FE is infinitesimally a half-space
with inward unit normal



2.1.2 Idea of proof
Proof idea: Pick a point on 0*E and zoom in, showing that the result is the
claimed half-space.
Two alternate views:
1. Zoom in by looking at E'N B, for smaller and smaller p.
2. Blow up E by considering p~!E for smaller and smaller p.
They are equivalent (up to a coordinate change), but give different limits.

First part: Derive the bound (6) of the form
pe(B,) < Cp™.
By a coordinate change this gives
tp-1g(Br) < C

allowing the compactness theorem for BV functions to be used to get a limit
set F'.

Second part, cute trick: Rewrite derivative [(D;¢)dL™!' as [(vidug,
which goes to zero when zooming in if i # n + 1.

/ XpDi¢dL™™ =0
Rn+1

S0
/ xrDi¢dL™ for almost every y € R
R

S0
b
/ xr(x,y)dzx is independent of a and b

so xpdz is translation-invariant. Hence yp(z,y) = 1 or xp(z,y) = 0 for
a.e. T.
Hence FF = R™ x H for some H C R.

The same trick in direction n + 1 gives an inequality yielding H = (), 00)
for some A € [—o0, 0]

Third part: Using the Sobolev inequality to show that
L""YB,NE) > cp" ™

and
Ln+1(Bp \ E) > CPRH

for all small p.
Hence A = 0.



2.1.3 Why precisely locally finite perimeter?

e The compactness theorem for BVj,. functions.

e Allows expressing derivatives [(D;¢)dL" as [ (vidug.
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