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1 The structure theorem

A (σ-finite) purely n-unrectifiable set in Rn+k has Hn-measure zero projec-
tion onto almost every plane.

1.1 Purely unrectifiable sets

A set is purely n-unrectifiable if it contains no countably n-rectifiable subsets
of positive Hn-measure.

1.1.1 Example from [1]

Consider the set P1 consisting of four disks of radius 1/4, and consider the
lines `1 and `2:

Iterate the construction to form P1 ⊃ P2 ⊃ . . . ⊃ P :

Projections Π+ and Π− on these lines yield measure zero sets.
Let γ : [0, 1]→ R be a Lipschitz curve.
Let A = γ−1(P ). Then H1(Π+(γ(A))) = 0 so f ′(t) ⊥ `+ for a.e. t ∈ A.
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Similarly f ′(t) ⊥ `− for a.e. t ∈ A. Hence A has measure zero so f(A) =
im f ∩ P has measure zero. Hence P is purely unrectifiable.

Note that P projects both horizontally and vertcally onto the interval [0, 1].

1.2 Idea for a proof by induction

A proof by induction (based on Besicovitch’s theorem) due to Brian White
can be found in [2].

Construction: Consider a set X ⊂ Rn+k with nonzero Hk measure and with
positive projection onto a positive-measure set of k-planes. Define f : Rk →
Rn+k by

f(x) = min{y ∈ Rn : (x, y) ∈ X}

where Rn is ordered lexicographically. It turns out that this function (or a
similarly defined function after rotating Rn+k) is approximately differentiable
in a sense such that it restricts to a Lipschitz function on some set of positive
measure. Its graph then has positive-measure intersection with X.

Example: With n+ k = 3 and k = 2, this gives the ”lower boundary” of the
set. With n+ k = 3 and k = 1 it gives the lower-left point in each slice.

To prove that f is approximately differentiable one uses the structure theo-
rem for curves in Rn+1, which can be established using induction.

2 Sets of locally finite perimeter

Remarkable that the simplest intuition for tangent space works for such
general sets: Zoom in until the set becomes a half-space.

2.1 De Giorgi’s theorem

2.1.1 Idea of statement

Let E have locally finite perimeter. Then E is infinitesimally a half-space
with inward unit normal

νE(x) = lim
ρ→0

∫
Bρ(x)

ν dµE

µE(Bρ(x))
.

2



2.1.2 Idea of proof

Proof idea: Pick a point on ∂∗E and zoom in, showing that the result is the
claimed half-space.

Two alternate views:

1. Zoom in by looking at E ∩Bρ for smaller and smaller ρ.

2. Blow up E by considering ρ−1E for smaller and smaller ρ.

They are equivalent (up to a coordinate change), but give different limits.

First part: Derive the bound (6) of the form

µE(Bρ) ≤ Cρn.

By a coordinate change this gives

µρ−1E(B1) ≤ C

allowing the compactness theorem for BV functions to be used to get a limit
set F .

Second part, cute trick: Rewrite derivative
∫

(Diζ)dLn/1 as
∫
ζνidµE ,

which goes to zero when zooming in if i 6= n+ 1.∫
Rn+1

χFDiζ dL
n+1 = 0

so ∫
R
χFDiζ dL

n+1 for almost every y ∈ Rn

so ∫ b

a
χF (x, y)dx is independent of a and b

so χF dx is translation-invariant. Hence χF (x, y) = 1 or χF (x, y) = 0 for
a.e. x.
Hence F = Rn ×H for some H ⊆ R.

The same trick in direction n + 1 gives an inequality yielding H = (λ,∞)
for some λ ∈ [−∞,∞].

Third part: Using the Sobolev inequality to show that

Ln+1(Bρ ∩ E) ≥ cρn+1

and
Ln+1(Bρ \ E) ≥ cρn+1

for all small ρ.
Hence λ = 0.
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2.1.3 Why precisely locally finite perimeter?

• The compactness theorem for BVloc functions.

• Allows expressing derivatives
∫

(Diζ)dLn+1 as
∫
ζνidµE .
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