An Example related to Seminar 5.

During the seminar I tried to give an example relating to the final part of Theorem 14.2. In particular I wanted to indicate that the Sobolev inequality part of the argument was quite subtle and that it was not obvious at all that $\lambda=0$. I thought that I should write down the example with some care.

The statement: Let $u \in B V$ be a function and $\nabla u=\sigma(x) \mu$ for some function $|\sigma(x)|=1$ and measure μ. Assume furthermore that $0 \in \operatorname{spt}(\mu)$ and that

$$
\begin{equation*}
\lim _{\rho \rightarrow 0} \frac{\int_{B_{\rho}(0) \nabla u(x) d x}}{\mu\left(B_{\rho}(0)\right)}=-e_{n+1} \tag{1}
\end{equation*}
$$

then it doesn't necessary follow that $\mu_{0}=\lim _{\rho \rightarrow 0} \frac{\mu(\rho \cdot)}{\mu\left(B_{\rho}(0)\right)}$ satisfies $\operatorname{spt}\left(\mu_{0}\right)=$ $\left\{x_{n+1}=0\right\}$. We may even choose u so that $\operatorname{spt}(\mu)$ has zero $(n+1)$-dimensional measure.

Clearly this shows that the final part of the argument of Theorem 14.2 depends on the assumption that we have a set of finite perimeter (and not just any BV function.)

The Example: We define $u(x) \in B V(-1,1)$ (the one dimensional case) as

$$
u(x)= \begin{cases}\sum_{k=1}^{n} \frac{1}{(k!)^{2}} & \text { if } x \in\left(\frac{1}{(n+1)!}, \frac{1}{n!}\right] \\ \sum_{k=1}^{\infty} \frac{1}{(k!)^{2}} & \text { if } x \leq 0\end{cases}
$$

Then it follows that

$$
u^{\prime}(x)=-\sum_{n=1}^{\infty} \frac{1}{((n+1)!)^{2}} \delta_{1 / n!}
$$

where δ is the dirac delta measure.
Clearly (1) holds since $\sigma(x)=-1$ on the support of $u^{\prime}(x)$. Moreover, if we make the blow-up with $\rho_{m}=\frac{2}{m!}$ then, on the set $(-1,1)$,

$$
\begin{equation*}
\mu_{0}=\lim _{\rho_{m} \rightarrow 0} \frac{\mu\left(\rho_{m} \cdot\right)}{\mu\left(B_{\rho_{m}}(0)\right)}=\frac{\sum_{n=m}^{\infty} \frac{1}{((n+1)!)^{2}} \delta_{m!/(2(n!))}}{\sum_{n=m}^{\infty} \frac{1}{((n+1)!)^{2}}} . \tag{2}
\end{equation*}
$$

But it is only the first term in the numerator that will affect the limit since if we consider the numerator divided my the first term we get

$$
\begin{equation*}
\frac{\sum_{n=m}^{\infty} \frac{1}{((n+1)!)^{2}}}{\frac{1}{((m+1)!)^{2}}}=\sum_{n=m}^{\infty} \frac{((m+1)!)^{2}}{((n+1)!)^{2}} \leq 1+\sum_{n=m+1}^{\infty} \frac{1}{(n+1)^{2}} \rightarrow 1 \tag{3}
\end{equation*}
$$

as $m \rightarrow \infty$.
Using (3) in (2) we can deduce that

$$
\mu_{0}=\delta_{1 / 2}
$$

By choosing $\rho_{k}=\frac{s}{m!}$, for $s>1$, we can assure that $\mu_{0}=\delta_{1 / s}$ - that is the support of μ_{0} will depend on the particular subsequence we choose and the support of μ_{0} may not be the origin.

