GMT Seminar 15th January.

The most important Theorem in this weeks reading is Theorem 14.3. It is a very profound and deep result. It is worthwhile to focus a little extra on the result and on its proof. I have the following questions relating to the Theorem:

Question 1: What is the geometric meaning of $\partial^* E$ defined in formula (14.2). More specifically, what is the meaning of the limit

$$\lim_{\rho \to 0} \frac{\int_{B_{\rho}(x)} \nu d\mu_E}{\mu_E(B_{\rho}(x))}$$
 exists and has length 1? (1)

Question 2: Are there any counterexamples to the existence of the limit in (1)?

Question 3: Are there any examples where the limit (1) exists but has non-unit length?

Question 4: I mentioned above that Theorem 14.3 is deep. Why is it so deep?¹

Question 5: Why does the right hand side in equation (4) on p.74 exist for a.e. ρ ?

Question 6: What does equation (5) on page 74 mean geometrically?

Question 7: Can you say something about the first equation, and the line following that equation, on page 75? That is the pivotal point of the proof. ²

Question 8: How does it follow that χ_H is non-decreasing in \mathbb{R} on p.75?

Question 9: After equation (8) on p.75 follows a rather difficult (at least non-intuitive) argument to show that $\lambda = 0$.

- 1. Is it, or isn't it, obvious that the tangent plane must cut through the origin since we assume that $0 = y \in \operatorname{spt}(\mu_E)$?
- 2. Can one find an example of a BV function³ u(x) such that if $\nabla u(x) = \nu(x)\mu(x)$ for some vector $\nu(x)$ with $|\nu(x)| = 1$ a.e. and μ a measure and $0 \in \operatorname{spt}(\mu)$ and

$$\lim_{\rho \to 0} \frac{\int_{B_{\rho}(0)} \nu(x)\mu(x)}{\mu(B_{\rho}(0))} = (0, 0, \dots, 0, 1)$$

¹Of course, I may be mistaken and it might be trivial - in that case why?

 $^{^{2}}$ This question is very undefined - but it is worth focusing on that equation for a few minutes.

³Obviously not a function of the form χ_E .

but, for some subsequence $\rho_j \to 0$,

$$\operatorname{spt}\left(\lim_{\rho_{j}\to 0}\frac{\nabla u_{j}(\rho x)}{\mu(B_{\rho_{j}}(0))}\right)\neq\{y\in\mathbb{R}^{n};\;y_{n+1}=0\}?$$

In that case, how is it used that the BV function is of the form χ_E in the proof of Theorem 14.3?

Question 10: Exactly what is integrated on p. 76 to deduce equation (9)?