GMT Seminar 29th January.

Question 1: [Courtesy of Eric Larsson]

1. In Lemma 17.11, what is the interpretation of $H \in L_{l o c}^{p}(\mu)$?
2. Is there a good example where this property fails?
3. What is the geometric interpretation of the conclusion of Lemma 17.11?

Question 2: [Courtesy of Andreaas Minne]

1. What is the geometric interpretation of 17.3 and/or of one of its corollaries: 17.4 and 17.5 ?
2. Do you have any cool examples of stationary varifolds?

Question 3: What is the relation between Definition 16.3 and 16.4. In particular, why is the defining formula in Definition 16.3

$$
\int \operatorname{div}_{M}(X) d \mu_{V}=0
$$

with zero right hand side. And the defining formula in Definition 16.4

$$
\int \operatorname{div}_{M}(X) d \mu_{V}=-\int X \cdot \bar{H}_{M} d \mu_{V}
$$

with non-zero right hand side.
Question 4: A stationary varifold is "supposed to be a minimal surface" but I quite frankly do not understand the presence of θ in the definition. I thought that we should discuss that and see if we can make any sense of the multiplicity function in the definition.

1. Let $V=(M, \theta)$ be a varifold given by a rectifiable set $M=\left\{x \in \mathbb{R}^{2} ; x_{2}=\right.$ 0 and $\left.x_{1} \in[-1,1]\right\}$ and a density function

$$
\theta(x)= \begin{cases}1 & \text { if } x_{1} \leq 0 \\ 2 & \text { if } x_{1}>0\end{cases}
$$

Is V stationary?
2. Consider the propeller varifold in the picture below (the varifold is the three straight lines - the circle is just there to remind us of peace, love and understanding). All the angles are $2 \pi / 3$.

Is the varifold stationary if $\theta=1$? What if $\theta(x)= \begin{cases}1 & \text { if } x_{1} \leq 0 \\ 2 & \text { if } x_{1}>0\end{cases}$

Question 5: In Corollary 17.8, page 86 , it is claimed that $\theta^{n}(\mu, x)$ is upper semi-continuous. But if we assume that $V=(M, \theta)$ is a stationary varifold with multiplicity function $\theta=1$, so that $\mu=\left.\mathcal{H}^{n}\right|_{M}$. Will it follow that $\theta^{n}(\mu, x)$ is continuous?

Question 6: (More like a homework, and it involves some PDE theory.) A minimal graph over some open set $U \subset \mathbb{R}^{n}$ is the graph of some function $f \in C^{0,1}(U)$ such that the f minimizes the following energy among all functions with the same boundary data

$$
\int_{U} \sqrt{1+|\nabla f(x)|^{2}} d x
$$

1. What is the statement of the monotonicity formula for a minimal graph?
2. Use the monotonicity formula to prove that for almost every $x^{0} \in U$, such that $B_{R}\left(x^{0}\right) \subset U$ for some $R>0$, the following estimate holds

$$
\sqrt{1+\left|\nabla f\left(x^{0}\right)\right|^{2}} \leq \frac{1}{\omega_{n} R^{n}} \int_{B_{R}\left(x^{0}\right)} \sqrt{1+|\nabla f(x)|^{2}} d x
$$

that is the integral of the gradient controls the point-wise value of the gradient.
3. For a harmonic function $u(x)$, that is $\Delta u(x)=0$, it follows that $\Delta|\nabla u(x)|^{2}=$ $2 \sum_{i, j=1}^{n}\left|\partial_{i j} u(x)\right|^{2} \geq 0$. That is, the gradient squared is sub-harmonic so it satisfies the sub-meanvalue property. Is there any relation to the monotonicity formula?

