GMT Seminar 12th February.

Question 1. [ERIC LARSSON] Let V be a flat unit disk with center $\xi \in \mathbb{R}^{3}$, and let R be smaller than the radius of the disk. Explain why this is not a counterexample to Lemma 19.1.

Question 2. [Eric Larsson] The first sentence on page 99 states that "It is easy to check that (5) [...] implies that μ_{W} is invariant under homotheties [...]". How would you check this?

Question 3. [Eric Larsson] The statement of Lemma 19.5 is somewhat difficult to read. Is there a simpler special case which still captures the essence of the lemma?

Question 4. [Andreas Minne and Erik Duse.] On page 95, how does one get the exponent $n / n-1$ in the inequality following "we then get..."?

Question 5. [Andreas Minne and Erik Duse.] This question concerns the last session, namely $17.9(1)$ Remarks: why is it true that "... hence we can write $V \mid U=v\left(M_{*}, \theta_{*}\right) "$?

Question 6. [Andreas Minne and Erik Duse.] How would you explain the reasoning for finding the proofs of the results in Chapter 18 and 19 (for example the proofs of 18.6 Theorem and Lemma 19.5)?

Question 7: Lemma 19.1 on page 95 looks like one of Leon Simon's normal technical mumbo-jumbo Lemmata. But it has a very intuitive geometric interpretation- what? How does this relate to the maximum principle in elliptic PDE?

Question 8: One of the most powerful tools in analysis is the BolzanoWeierstrass Theorem. For many applications it is enough to find the convergent sub-sequence of a bounded sequence whose existence Bolzano-Weierstrass Theorem assures. However, in Theorem 19.3 on page 97 we assume the full convergence as $\rho \rightarrow 0$ (not just convergence for some subsequence $\rho_{j} \rightarrow 0$).

Is this necessary? Can we weaken the assumptions?
Question 9: Again in relation to Theorem 19.3. What does the Theorem say? What is the meaning? How does Theorem 1.3 relate to the theory of minimal surfaces?

Question 10: The "normal" Sobolev inequality in $W_{0}^{1,1}(U)$ states that there exists a constant C such that

$$
\left(\int_{U}|h(x)|^{\frac{n}{n-1}} d x\right)^{\frac{n-1}{n}} \leq C \int_{U}|\nabla h(x)| d x
$$

This is usually interpreted as a statement that $W_{0}^{1,1}(U) \hookrightarrow L^{n /(n-1)}(U)$.

In Theorem 18.6 on page 93 Simon proves the more general Sobolev inequality on a varifold

$$
\left(\int_{B_{1}(0)}|h(x)|^{\frac{n}{n-1}} d \mu\right)^{\frac{n-1}{n}} \leq C \int_{B_{1}}\left(\left|\nabla^{M} h(x)\right|+|H| h(x)\right) d \mu .
$$

Does this imply that $W_{0}^{1,1}(V \cap U) \hookrightarrow L^{n /(n-1)}(V \cap U)$ in some meaningful sense?

